Agenda

- Xilinx Series 7 Highlights
- Zynq-7000 EPP Architecture & Silicon
- Zynq-7000 Software & Applications
- Summary
Xilinx 7 Series Highlights

- **7 Series silicon devices**
 - 28 nm Technology, TSMC HPL process
 - 50% reduction in power over 40 nm devices

- **3 FPGA Fabrics**
 - Artix = Low cost, low power FPGA ("1W FPGA")
 - Kintex = Density & performance FPGA ("Market Sweet spot")
 - Virtex = Highest density and performance FPGA ("More than Moore")

- **‘More than Moore’ density increase**
 - Up to 2M logic cells
 - Using Stacked Silicon Interconnect Technology (SSIT)

- **Improved GT bandwidth**
 - GT bandwidth increased to 28 GHz

- **Zynq Embedded Processing Platform (EPP)**
More Than Moore
Xilinx Stacked Silicon Interconnect Technology

Microbumps
- Access to power / ground / IOs
- Access to logic regions

Through-silicon Vias (TSV)
- Only bridge power / ground / IOs to C4 bumps
- Coarse pitch, low density aids manufacturability
- Etch process (not laser drilled)

Passive Silicon Interposer (65nm Generation)
- 4 conventional metal layers connect micro bumps & TSVs
- No transistors means low risk and no TSV induced performance degradation

Side-by-Side Die Layout
- Minimal heat flux issues
- Minimal design tool flow impact
Zynq-7020 Device

- **Processor System (PS)**
 - ARM Cortex-A9 MPcore
 - Standard Peripherals
 - 32-bit DDR3 / LPDDR2 controller
 - 54 Multi-Use IOs
 - 73 DDR IOs

- **Programmable Logic (PL)**
 - 85 K Logic Cells
 - 106K FFs
 - 140 32-Kb Block RAM
 - 220 DSP Blocks
 - Dual 12-bit ADC
 - Secure configuration engine
 - 4 Clock Management Tiles
 - 200 Select IO (1.2-3.3V)
Zynq-7000 Device Family

<table>
<thead>
<tr>
<th>Zynq-7000 EPP Devices</th>
<th>Z-7010</th>
<th>Z-7020</th>
<th>Z-7030</th>
<th>Z-7040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zynq-7000 EPP Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor Core</td>
<td>Dual ARM® Cortex™-A9 MPCore™</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor Extensions</td>
<td>NEON™ & Single / Double Precision Floating Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Frequency</td>
<td>800MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>L1 Cache 32KB I / D, L2 Cache 512KB, on-chip Memory 256KB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Memory Support</td>
<td>DDR3, DDR2, LPDDR2, 2x QSPI, NAND, NOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripherals</td>
<td>2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate ASIC Gates</td>
<td>~430K (30k LC)</td>
<td>~1.3M (85k LC)</td>
<td>~1.9M (125k LC)</td>
<td>~3.5M (235k LC)</td>
</tr>
<tr>
<td>Extensible Block RAM</td>
<td>240KB</td>
<td>560KB</td>
<td>1,060KB</td>
<td>1,860KB</td>
</tr>
<tr>
<td>Peak DSP Performance (Symmetric FIR)</td>
<td>58 GMACS</td>
<td>158 GMACS</td>
<td>480 GMACS</td>
<td>912 GMACS</td>
</tr>
<tr>
<td>PCI Express® (Root Complex or Endpoint)</td>
<td>-</td>
<td>Gen2 x4</td>
<td>Gen2 x8</td>
<td></td>
</tr>
<tr>
<td>Agile Mixed Signal (XADC)</td>
<td>2x 12bit 1Msps A/D Converter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor System IO</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi Standards 3.3V IO</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Multi Standards High Performance 1.8V IO</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Multi Gigabit Transceivers</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>
Zynq-7000 Processor System (PS)

- **Dual Core Cortex ARM A9**
 - NEON, 512 KB L2 cache
 - 256 KB On-Chip-Memory (OCM)
- **DDR Interface**
 - DDR3 Performance
 - High BW utilization
- **Config & Legacy Memory I/F**
 - Quad-SPI, NOR, NAND
- **Standard Peripherals – GigE …**
 - Available to PS IO or to Programmable Logic
- **System Level Peripherals**
 - Clock generation, Counter Timers
 - 8 Channel DMA controller
 - Coresight Debugging
Zynq-7000 Programmable Logic (PL)

- **Programmable Logic Resources**
 - 30K – 235 K Logic Cells
 - Dedicated 36 K-bit BRAMs, DSP, CMT
 - XADC dual channel 12-bit ADC
 - Up to 12 GTs with PCIe hard core
 - Up to 300 Select IOs

- **Programmable Logic AXI Interfaces**
 - Multiple 32/64 bit AXI interfaces to PL
 - Accelerator Coherency Port (ACP) with access to caches

- **Programmable Logic System Interfaces**
 - Interrupts, DMA control
 - Debug

- **High Performance PL Configuration**
 - Security Decryption Engine
 - Under 200 ms configuration time from flash
 - Debugging interfaces
Customizing Zynq
Tools for the Programmable Logic System Builder

- **Clocking**
 - Flexible clock sources (PS or PL)
 - Simple clock interfaces

- **Memory and Peripheral access**
 - PL access to all memory: Caches, OCM, DDR
 - 2 dedicated DDR ports ensure bandwidth
 - PL access to all peripherals in PS

- **Interconnect**
 - AXI Interconnect IP available from Xilinx
 - Optimized for FPGA implementation

- **Debug and Misc.**
 - Bidirectional cross-triggers (Coresight and Chipscope)
 - 16 general purpose interrupts from PL to PS
SW user experience:
SoC with integrated PL

- Configure PL (full and partial)
- Start/stop & single step clocks
- Setup & update HW triggers
- Monitor HW performance counters
- Observe & sync to PL hardware events
Zynq-7000 Power Saving Features

- **Low power 1.0V HPL 28 nm process silicon technology**
- **Programmable Logic can be powered off and on as needed**
 - 40-90% reduction in static power depending on device
 - Very fast configuration times when loaded from DRAM
- **Low power ARM Cortex-A9 MP**
 - Incorporates clock gating and power-down modes
- **Support for LPDDR2 devices**
 - Ultra low power self refresh
- **Peripherals shutdown**
Process Considerations:

- **28 HP**: Highest Performance HKMG Process (but must be able to afford power; e.g. GPU)
- **28 HPL**: Low power HKMG process (shifts down HP power / performance range)
- **28 LP**: No HKMG low power process (cheaper than HPL, but less performance)

Xilinx’ Reasons for Selecting HPL:

- Higher performance than LP (at same power level)
- Higher performance vs HP at FPGA TDP (or lower power at same performance)
Engineering Insights
Finding The Frequency Sweet Spot (within the HPL Process)

Normalized Power vs. Frequency

Vt usage
- High Vt
- Med Vt
- Low Vt

Timing Histograms
- Worst Setup
- Hold
- Typical

Normalized Path Delay
- Max
- Nom
- Min
Engineering Insights
Configuring Interconnect

CPU: 800 MHz
FPGA: 200 MHz
OCM: 400 MHz
Switch

CPU:
FPGA:
OCM:

Threshold

Copyright 2011 Xilinx
Agenda

- Xilinx Series 7 Highlights
- Zynq-7000 EPP Architecture & Silicon
- Zynq-7000 Software & Applications
- Summary
Zynq-7000 Use Cases

Use Case #1
Access peripheral configuration registers

Use Case #2
Access datapath configuration registers
Access datapath memory (coefficient tables)

Use Case #3
Low latency/high bandwidth shared work spaces
Move data between SW and HW domains
Application Programming Using Only C

Application
C/C++

High-Level Synthesis via AutoESL

Device Information
Binary for CPU
Bitstream for PL fabric

SW-Centric Design Environment

- CPU
- Memory
- Data Movement Interconnect
- Video Codec
- Encryption
- LTE Modem
- FPGA Fabric

Device Information
AutoESL Generated Accelerators
C-Based, High-Level Synthesis Tools at Xilinx

Application Example:
Back Projection Algorithm (recreate CT scan images from samples)

![Bar chart showing performance comparison]

- **gprof**
 Locate SW hot spot function(s) on ARM

- **AutoESL**
 Synthesize hot spot function(s) to HW/PL

- **52 Floating Point Operators @ 200Mhz**
- **Fits in lowest cost Zynq 7010 device**
- **3X Performance vs SW only**
- Using CPU Programmed IO
- IO dominates accelerator compute time
- Using DMA
- DMA setup time dominates (white space between green bars)
Xilinx Evolution Towards Multicore

Multicore programming models being ported to Zynq
Agenda

- Xilinx Series 7 Highlights
- Zynq 7000 EPP Architecture & Silicon
- Zynq 7000 Software & Applications
- Summary
Summary

- **Zynq SoC Device Family** with Integrated Programmable Logic
- **$15 Price Point** / 28nm Fab Process
- **Microcontroller and Accelerator Use Models**
- **Industry Standard Tools** (ARM Ecosystem, Android, ISE)
- **Emerging Tools** (AutoESL, Multicore)
- **Emulation platforms in use for prototyping**
- **Available 1H 2012**

Android on Zynq emulation board

Source: iVeia LLC

* High volume price for smallest device and package, slowest speed grade