Summary

This application note explains the steps required to validate the Xilinx LogiCORE™ Aurora 8B10B IP core on the Kintex®-7 FPGA KC705 Evaluation Kit. Aurora 8B10B is a scalable, lightweight, high data rate, link-layer protocol for high-speed serial communication. Aurora is designed to enable easy implementation of Xilinx transceivers using an intuitive wizard interface. The Aurora protocol specification is open and available upon request. The Aurora core is available free of charge in the Vivado® IP catalog and is licensed for use in Xilinx silicon devices.

Aurora is typically used in applications where other industry standard serial interfaces are either too complex or resource intensive. Aurora delivers a low-cost, high data rate, scalable and flexible means to build a serial data channel. Its simple framing structure can be used to encapsulate data from existing protocols, and electrical requirements are compatible with commodity equipment. Aurora can be used to provide increased performance without high FPGA resource costs, software redevelopment, or exotic physical infrastructure.

The reference design is targeted for the Xilinx Kintex-7 FPGA KC705 evaluation board.

Included Systems

The reference design is created and built using the Vivado Design Suite: System Edition 2013.3. The Vivado Design Suite helps simplify the task of instantiating, configuring, and connecting IP blocks to form complex integrated systems. The design also includes VIO and ILA cores to probe the signals.

Introduction

This application note details the steps required to configure the Aurora 8B10B core with Vivado Design Suite and to validate the operation of the core using the VIO and ILA cores to probe various signals.

Two examples are presented:
1. A single-lane configuration using two platforms (see Figure 1).
2. A four-lane configuration using a single platform in loopback mode (see Figure 2).

The completed example design can be used to form a building block for more complex systems.

The example test setup uses two clock sources to generate the 156.25 MHz clock signals for the single-lane example. For the four-lane example, loopback mode is used allowing demonstration with a single board. In this case, a single clock source is used to generate the clock signal. Any suitable conditioned 156.25 MHz clock source can be used to replicate these examples.
Hardware Requirements

Single-Lane Example
- Two Kintex-7 FPGA KC705 evaluation boards
- Two KC705 Universal 12v power adapters
- Two suitable clock generators to generate 156.25 MHz
- Two JTAG platform USB cables
- Eight SMA to SMA connector cables

Four-Lane Example
- Kintex-7 FPGA KC705 evaluation board
- KC705 Universal 12v power adapter
- A suitable clock generator to generate 156.25 MHz
- JTAG platform USB cable
- Two SMA to SMA connector cables

Figure 1: Single Lane Reference Design

Figure 2: Four Lane Reference Design
Both single-lane and four-lane examples share the same software requirements:

- Vivado Design Suite 2013.3

Building Hardware

Single Lane Example

Customizing the Aurora Core

Follow these steps to customize and generate the Aurora 8B10B core for the single lane example:

4. Select **Create New Project** and click **Next**.
5. Select the project name and path and click **Next**.
6. Select **RTL Project** to permit running the example design and check *Do not specify sources at this time*. Click **Next**.
7. Click **xc7k325tffg900-2** or, select the **Boards** option and then click **Kintex-7 FPGA KC705 Evaluation platform**.
8. Click **Next**, then click **Finish**.
9. Under Project Manager in the Flow Navigator panel, select **IP catalog** and search for **Aurora 8B10B**. The Aurora cores can be found under **Communication & Networking > Serial Interfaces**. See Figure 3.

10. Right-click **Aurora 8B10B** and select **Customize IP**.
11. In the **Core Options** tab of the Customize IP window, set **GT Refclk (MHz)** to 156.25 and select the **Vivado Lab Tools** option.
12. Set the configuration options shown in Figure 4.

13. Click the **GT Selections** tab.

14. Change the default setting in the lower list box for GTXQ0 from 1 to X.

15. Change the lower list box setting for GTXQ2 from X to 1 (Figure 5) and click OK.

Note: The GTXQ2 transceiver is the only transceiver pinned out to SMA connectors on the KC705 board. When placing the cursor over the list box setting, a tooltip appears to verify the location of the selected transceiver.
16. In the Generate Output Products window, if not already selected by default, select Generate Synthesized checkpoint (.dcp) and click Generate.

Synthesizing the Example Design

1. When product generation is complete, in the Project Manager section of the Vivado IDE, right-click the core name and select Open IP Example Design (see Figure 6).
2. Click **OK** to overwrite the existing example design.
3. Click **OK** to acknowledge IP upgrade then click **Generate** to generate the 7 series ILA cores.
4. Click **OK** to acknowledge IP upgrade then click **Generate** to generate the 7 series VIO cores.
5. In the newly-opened Vivado IDE window, expand the Constraints entry in the Sources panel of the Project Manager section. Right-click the constraints file (`aurora_8b10b_0_exdes.xdc`) and select **Open file** (*Figure 7*).
6. Assign the pin locations for the Aurora core ports to those shown in *Table 1*.

Figure 6: Open IP Example Design
7. This example contains unconstrained pins. To permit bitsream file generation, add this line to the end of the constraints file (Figure 7):

 set_property BITSTREAM.General.UnconstrainedPins {Allow} [current_design]

 Caution! Spelling is critical. Double-check changes to the constraints file before proceeding.

8. Right-click within the constraints file editor window and select **Save File.** Close the constraints file editor window.

9. Select **Generate Bitstream** from the Flow Navigator panel (Figure 8).

Figure 7: Aurora 8B10B Single Lane Constraints File

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>LOC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTXQ2_N</td>
<td>J7</td>
</tr>
<tr>
<td>GTXQ2_P</td>
<td>J8</td>
</tr>
<tr>
<td>INIT_CLK_N</td>
<td>AD11</td>
</tr>
<tr>
<td>INIT_CLK_P</td>
<td>AD12</td>
</tr>
<tr>
<td>RESET</td>
<td>AG5</td>
</tr>
<tr>
<td>GT_RESET_IN</td>
<td>AC6</td>
</tr>
<tr>
<td>CHANNEL_UP</td>
<td>AA8</td>
</tr>
<tr>
<td>LANE_UP</td>
<td>AB8</td>
</tr>
<tr>
<td>HARD_ERR</td>
<td>G17</td>
</tr>
<tr>
<td>SOFT_ERR</td>
<td>F17</td>
</tr>
<tr>
<td>ERR_COUNT</td>
<td>B17</td>
</tr>
</tbody>
</table>
10. Click Yes to launch Synthesis and Implementation and proceed with bitstream file generation.

Continue with Setting up the Single Lane Example, page 14.

Four Lane Example

Customizing the Aurora Core

Follow these steps to customize and generate the Aurora 8B10B core for the four lane example:

1. Launch Vivado Design Suite.
2. Select **Create New Project** and click **Next**.
3. Select the project name and path and click **Next**.
4. Select **RTL Project** to permit running the example design and check **Do not specify sources at this time**. Click **Next**.
5. Click **xc7k325tffg900-2**, or, select the **Boards** option and then click **Kintex-7 FPGA KC705 Evaluation platform**.
6. Click **Next** then click **Finish**.
7. Under Project Manager in the Flow Navigator panel, select **IP catalog** and search for **Aurora 8B10B**. The Aurora cores can be found under **Communication & Networking > Serial Interfaces**. See Figure 9.

Figure 8: Generate Bitstream
8. Right-click **Aurora 8B10B** and select **Customize IP**.

9. In the Core Options tab, set **GT Refclk (MHz)** to **156.25** and select the **Vivado Lab Tools** option.

10. Set the configuration options shown in **Figure 10**.
11. Click the **GT Selections** tab.
12. Set Lanes to **4**.
13. Change the default setting in the lower left list box for GTXQ0 from **1** to **X**.
14. Change the list box settings for GTXQ2 from **X**, **1**, **2**, **3**, and **4** (see Figure 11) and click **OK**.

Note: The GTXQ2 transceiver is the only transceiver pinned out to SMA connectors on the KC705 board. When placing the cursor over the list box setting, a tooltip appears to verify the location of the selected transceiver.

Figure 10: Aurora 8B10B Four Lane Core Options Settings

![Aurora 8B10B Four Lane Core Options Settings](image-url)
15. In the Generate Output Products window, if not already selected by default, select Generate Synthesized checkpoint (.dcp) and click Generate.

Synthesizing the Aurora Core

1. When product generation is complete, in the Project Manager section of the Vivado IDE, right-click the core name and select Open IP Example Design (Figure 12).

Figure 11: Aurora 8B10B Four Lane GT Selections
2. Click **OK** to overwrite the existing example design.

3. Click **OK** to acknowledge IP upgrade then click **Generate** to generate the 7 series ILA cores.

4. Click **OK** to acknowledge IP upgrade then click **Generate** to generate the 7 series VIO cores.

5. In the newly-opened Vivado IDE window, expand the Constraints entry in the Sources panel of the Project Manager section. Right-click the constraints file (aurora_8b10b_0_exdes.xdc) and select **Open file** (Figure 13).

6. Assign the pin locations for the Aurora core ports to those shown in Table 2.
Table 2: **Aurora 8B10B Four Lane Constraints**

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>LOC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTXQ2_N</td>
<td>J7</td>
</tr>
<tr>
<td>GTXQ2_P</td>
<td>J8</td>
</tr>
<tr>
<td>INIT_CLK_N</td>
<td>AD11</td>
</tr>
<tr>
<td>INIT_CLK_P</td>
<td>AD12</td>
</tr>
<tr>
<td>RESET</td>
<td>AG5</td>
</tr>
<tr>
<td>GT_RESET_IN</td>
<td>AC6</td>
</tr>
<tr>
<td>CHANNEL_UP</td>
<td>AA8</td>
</tr>
<tr>
<td>LANE_UP[0]</td>
<td>AB8</td>
</tr>
<tr>
<td>LANE_UP[1]</td>
<td>AC9</td>
</tr>
<tr>
<td>LANE_UP[2]</td>
<td>AB9</td>
</tr>
<tr>
<td>LANE_UP[3]</td>
<td>AE26</td>
</tr>
<tr>
<td>HARD_ERR</td>
<td>G17</td>
</tr>
<tr>
<td>SOFT_ERR</td>
<td>F17</td>
</tr>
<tr>
<td>ERR_COUNT</td>
<td>B17</td>
</tr>
</tbody>
</table>

Figure 13: **Aurora 8B10B Four Lane Constraints File**
7. This example contains unconstrained pins. To permit bitstream file generation, add this line to the end of the constraints file (Figure 13):

```
set_property BITSTREAM.General.UnconstrinedPins {Allow} [current_design]
```

Caution! Spelling is critical. Double-check changes to the constraints file before proceeding.

8. Right-click within the constraints file window and select **Save File**. Close the window.

9. Select **Generate Bitstream** from the Flow Navigator panel (Figure 14).

![Figure 14: Generate Bitstream](image)

10. Click **Yes** to launch Synthesis and Implementation and proceed with bitstream file generation.

Continue with **Setting Up the Four Lane Example**, page 16.

Executing the Reference Design in Hardware

Setting up the Single Lane Example

This example illustrates a single lane Aurora 8B10B connection between two platforms (see **Figure 1**, page 2). The platforms consist of two Kintex-7 FPGA KC705 Evaluation Kit boards shown in **Figure 15**.
In these instructions, numbers in parentheses correspond to callout numbers in Figure 15. Make these connections using the SMA to SMA connector cables.

1. Connect TXP from board 1 (4) to RXP of board 2 (5).
2. Connect TXN from board 1 (7) to RXN of board 2 (6).
3. Connect TXP from board 2 (4) to RXP of board 1 (5).
4. Connect TXN from board 2 (7) to RXN of board 1 (6).
5. Connect CLKP from clock source 1 to MGT CLK P of board 1 (2).
6. Connect CLKN from clock source 1 to MGT CLK N of board 1 (3).
7. Connect CLKP from clock source 2 to MGT CLK P of board 2 (2).
8. Connect CLKN from clock source 2 to MGT CLK N of board 2 (3).
9. Connect a JTAG platform USB cable from the host PC to the platform cable header of board 1 (1).
10. Connect a JTAG platform USB cable from the host PC to the platform cable header of board 2 (1).
11. Connect a KC705 Universal 12v power adapter cable to the power connector (9) of both boards.
12. Set the power switch (8) of both boards to the ON position.

The completed setup should resemble that shown in Figure 16.

Note: Separate clock sources should be used for each board.
Setting Up the Four Lane Example

This example illustrates a four lane Aurora 8B10B connection on one platform using internal loopback (see Figure 2, page 2). The platform consists of one Kintex-7 FPGA KC705 Evaluation Kit board shown in Figure 15, page 15.

In these instructions, numbers in parentheses correspond to callout numbers in Figure 15. Make these connections using the SMA to SMA connector cables.

1. Connect CLKP from the clock source to MGT CLK P of the platform board (2).
2. Connect CLKN from the clock source to MGT CLK N of the platform board (3).
3. Connect a KC705 Universal 12v power adapter cable to the power connector (9).
4. Set the power switch (8) to the ON position.

The completed setup should resemble that shown in Figure 17.
Setting Up the Single Lane Hardware Session

Programming the Devices

1. Under Program and Debug in the Project Manager section of the Vivado IDE, click Open Hardware Manager (Figure 18).

Figure 17: Aurora 8B10B Four Lane Setup

Continue with Setting Up the Four Lane Hardware Session, page 23.
2. At the top of the Hardware Manager panel (see Figure 19), click **Open a new hardware target** and **Click Next**.
3. Leave the Server name <host[:port]> set to `localhost:60001` and click Next.

 Note: This operation assumes the hardware target is connected to the host PC running Vivado Design Suite. It is possible to connect the hardware target to a second, networked host PC using the Vivado CSE Server application. For details, see the Using a Vivado Hardware Manager to Program an FPGA Device section in *Vivado Design Suite User Guide: Programming and Debugging* (UG908), [Ref 3].

4. Click to highlight one of the platform boards in the Hardware Targets list and click Next, then click Finish.

5. In the Hardware panel, click the active device, *XC7K325T_0(0) (Active)*.

6. In the Hardware Device Properties panel, set Programming file to the bitstream file name (*aurora_8b10b_0_exdes.bit*) and set Probes file to the probes file name (*debug_nets.ltx, Figure 20*).

Figure 19: Open a New Hardware Target

Figure 20: Hardware Device Properties
7. Right-click the device in the Hardware list and select Program Device... (Figure 21). Ensure that the bitstream file path and name are correct and click OK.

![Figure 21: Program Device](image)

8. When programming completes, right-click the programmed target device in the Hardware list and select Close Target (Figure 22).

![Figure 22: Close Target](image)

9. Right-click the second target platform in the Hardware list and select Open Target (Figure 23).

![Figure 23: Open Target](image)

10. Repeat step 6 and step 7 using the same bitstream and probes file names that were used for the first target.

11. When programming completes, right-click the programmed target device in the Hardware list and select Refresh Device (Figure 24).
Executing the Design

1. Right-click the device in the Hardware list and select Run Trigger. In the waveform window that appears, observe a High state on the lane_up and channel_up signals (see Figure 25).

2. Control-click to select these signals in the Debug Probes list under hw_vio_1:
 - channel_up_i_1
 - lane_up_i_1
 - gtreset_from_vio_i
 - sysreset_from_vio_i

3. Right-click the selection and select Add Probes to VIO Window (Figure 26).
4. Toggle the reset signals (see Figure 27). The channel_up_i_1 and lane_up_i_1 signals should go Low, then return High after each reset signal is toggled.

Figure 27: Toggle Reset Signals

Follow these steps to view the results of the reset signals in the waveform display:
1. Set one of the reset signals High (Figure 27).
2. Right-click the device in the Hardware list and select Run Trigger.
3. Click the waveform display tab and observe the results of the reset signal shown in Figure 28.
4. Repeat step 2 and step 3 after each change to the reset signals to observe the results.

The preceding steps attempt to demonstrate that when either \texttt{sysreset_from_vio_i} or \texttt{gtreset_from_vio_i} are asserted, both \texttt{channel_up_i_1} and \texttt{lane_up_i_1} go Low as the core (or transceiver) is in reset state. However, when both \texttt{sysreset_from_vio_i} and \texttt{gtreset_from_vio_i} are Low, the core is out of reset state and both \texttt{channel_up_i_1} and \texttt{lane_up_i_1} are High.

Setting Up the Four Lane Hardware Session

Programming the Device

1. Under Program and Debug in the Project Manager section of the Vivado IDE, click \textbf{Open Hardware Manager} (Figure 29).
2. At the top of the Hardware Manager panel, click **Open a new hardware target** (Figure 30) and click **Next**.
3. Leave the Server name <host[:port]> set to local host:60001 and click Next.

 Note: This operation assumes the hardware target is connected to the host PC running Vivado Design Suite. It is possible to connect the hardware target to a second, networked host PC using the Vivado CSE Server application. For details, see the Using a Vivado Hardware Manager to Program an FPGA Device section in Vivado Design Suite User Guide: Programming and Debugging (UG908), [Ref 3].

4. Click to highlight one of the platform boards in the Hardware Targets list and click Next, then click Finish.

5. In the Hardware panel, click the active device, XC7K325T_0(0) (Active).

6. In the Hardware Device Properties panel, set Programming file to the bitstream file name (aurora_8b10b_0_exdes.bit) and set Probes file to the probes file name (debug_nets.ltx, Figure 31).

Figure 30: Open a New Hardware Target

Figure 31: Hardware Device Properties
7. Right-click the device in the Hardware list and select **Program Device...** (Figure 32). Ensure that the bitstream file path and name are correct and click **OK**.

![Figure 32: Program Device](image)

8. When programming completes, right-click the programmed target device in the Hardware list and select **Refresh Device** (Figure 33).

![Figure 33: Refresh Device](image)

Executing the Design

1. Right-click the device in the Hardware list and select **Run Trigger**.
2. In the Debug Probes list, control-click to select all signals under **hw_vio_1**.
3. Right-click the selection and select **Add Probes to VIO Window**.
4. Observe that the **lane_up_vio_i** signal is toggling because the link partner is not yet connected.
5. On the **hw_vio_1** tab, click the down arrow on the list box next to the **loopback_vio_i[2:0]** signal (Figure 34).
6. For PMA loopback mode, set the **loopback_vio_i[2:0]** value to 2 and click **OK**.
7. For PCS loopback mode, set the **loopback_vio_i[2:0]** value to 1 and click **OK**.
8. Observe that the `lane_up_i_i_1` and `channel_up_r_1` signals settle to a High state.

9. Using the method in step 5 and step 6, toggle the `gtreset_vio_i` and `sysreset_vio_i` signals and observe that the `lane_up_i_i_1` and `channel_up_r_1` signals go Low, then return High after each reset signal is toggled (see Figure 35).
Follow these steps to view the results of the reset signals in the waveform display:

1. Using the method described previously in step 5 and step 6, set `gt_reset_vio_i` and `sysreset_vio_i` Low.

2. Right-click the device in the Hardware list and select Run Trigger.

3. Click the waveform display tab and observe the results of the reset signal shown in Figure 36.

4. Repeat step 2 and step 3 after each change to the reset signals to observe the results.

The preceding steps attempt to demonstrate that when either `sysreset_vio_i` or `gtreset_vio_i` are asserted, both `channel_up_r_1` and `lane_up_i_i_1` go Low as the core (or transceiver) is in reset state. However, when both `sysreset_vio_i` and `gtreset_vio_i` are Low, the core is out of reset state and both `channel_up_r_1` and `lane_up_i_i_1` are High.

Reference Design

The reference design files for this application note are generated when the Aurora 8B10B core is customized from the Vivado IP catalog.

Table 3 shows the reference design checklist.

Table 3: Reference Design Checklist

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Developer name</td>
<td>Dinesh Kumar, Ramachandra Thupalli</td>
</tr>
<tr>
<td>Target devices (stepping level, ES, production, speed grades)</td>
<td>Kintex-7 XC7K325T-2FFG900</td>
</tr>
<tr>
<td>Source code provided</td>
<td>Yes</td>
</tr>
<tr>
<td>Source code format</td>
<td>Verilog (VHDL indirect support through vho/netlist)</td>
</tr>
</tbody>
</table>
The Kintex-7 FPGA KC705 Evaluation Kit provides an excellent platform to implement and test the LogiCORE IP Aurora 8B10B core. Various configurations can be quickly evaluated using only the KC705 board, a clock source and the Vivado Design Suite.

References
Refer to these documents for additional details:

1. LogiCORE IP Aurora 8B/10B Product Guide (PG046)

Revision History
The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description of Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/15/2014</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
</tbody>
</table>
Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.