Lab Workbook Profiling Applications and Creating Accelerators

Profiling Applications and Creating Accelerators

Introduction

Program hot-spots that are compute-intensive may be good candidates for hardware acceleration,
especially when it is possible to stream data between hardware and the CPU and memory and overlap
the computation with the communication. This lab guides you through the process of profiling an
application, analyzing the results, identifying function(s) for hardware implementation, and then profiling
again after targeting function(s) for acceleration.

Objectives

After completing this lab, you will be able to:

e Use TCF profiler to profile a pure software application

o Use TCF profiler to profile a software application that calls functions ported to hardware
e Use manual profiling method by using sds_lib API and counters

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises five primary steps: You will create an SDx project, profile the pure software project,
accelerate one function and profile, profile using sds_lib API, and finally add another function to
accelerators and profile.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:
Create an Profile the Accelerate Profiling . 'IA?Cli
SDx Project |:> Application |:> sharpen_filter |:> using sds_lib |:> S;C Cee@;;i;rtso
i API
and Profile and Profile
v www.xilinx.com/university Zynqg 3-1
i‘ X”—INXJ Xup@xilinx.com

© copyright 2017 Xilinx



Profiling Applications and Creating Accelerators Lab Workbook

Create an SDx Project Step 1

1-1.

1-1-1.

1-1-2.

1-1-3.

1-1-4.

1-1-5.

1-1-6.

1-2.

1-2-1.

1-2-2.

Launch SDx and create a project, called lab3, using the Empty Application
template and then using the provided source files, targeting the Zed or
Zybo board.

Open SDx, and select c:\xup\SDSoC\labs as the workspace and click OK.

Create a new project called lab3

Click Next to see Choose Hardware Platform window showing various available platforms
Select either zybo or zed (depending on the board you are using) and click Next.

Select Standalone OS as the System Configuration, and click Next.

The Templates page appears, containing source code examples for the selected platform.
Select Empty Application and click Finish.
Note that the lab3 > src folder is empty.

Import the provided source files from the sourcel\lab3\src folder. Create an
Debug configuration and build the project.

Right click on src under lab3 in the Project Explorer tab and select Import...

Click on File System under General category and then click Next.

r"Import [ = &1

Select

\
|
Choose import source. H

Select an import source:

type filter text

4 |(= General
[ Archive File
= Existing Projects into Workspace
[ Preferences

s CfC++

> Install

> Remote Systems

> Run/Debug

> Team

> Tracing

[ VA L A A T Y

5 Xilinx

Figure 1. Selecting import source location

Zyng 3-2 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx



Lab Workbook Profiling Applications and Creating Accelerators

1-2-3. For the From Directory, click on the Browse button and browse to c:\xup\SDSoC\source\lab3\src
folder and click OK.
1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.
The files will be copied into the src folder under lab3 folder. This can be verified by expanding the
src folder in the Project Explorer tab and also by using Windows Explorer.
B 1mport l =l &1
File system 15
Import resources from the local file system. L—ld
From directory: IC:\xup\SDSoC\source\IabS\src - Browse...
& sic [}l edge_detect.c T
[¥]f<l edge_detecth
[v]}2 lab_design.h
[¥])£l rgb_2_gray.c =
[¥]}2 rgb_2_gray.h
[¥]J€1 SDSoC _lab_design_main.c
[¥] €l sharpen.c
[¥]Ji€l sharpen.h -
\ Filter Types.. H Select All I I Deselect All ‘
Into folder. lab3/src Browse...
Figure 2. Selecting path and files to be imported
1-2-5. Uncheck Generate bitstream and Generate SD card image options
1-2-6. Right-click on lab3 in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter —maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OKSelect Build Configurations > Set Active > Debug
1-2-7. Right-click on lab3 and select Build Project
This may take about four minutes as it is a pure software compilation.
Profile the Application Step 2
2-1. Connect the board in the JTAG mode and power it ON. Start the Debug
session. Add the TCF Profiler view and configure it to include the
Aggregate per Function option.
2-1-1. Connect the board in the JTAG mode and power it ON.
2-1-2. Right-click on the lab3 entry in the Project Explorer tab and select Debug As > Launch on
Hardware (SDSoC Debugger)
v www.xilinx.com/university Zynqg 3-3
(‘ XILINX” Xup@xilinx.com

© copyright 2017 Xilinx



Profiling Applications and Creating Accelerators Lab Workbook

Run As ' |
4 1 Launch on Emulator (SDSoC Debugger)
Teamm » | & 2 Launch on Hardware (SDSoC Debugger) |
Compare With »| % 3 Trace Application (SDSoC Debugger)

Restore from Local History... (] 4Local C/C++ Application

et [Tk P Debug Configurations...

Figure 3. Executing Debug Application action

A Confirm Perspective Switch window will appear asking you to switch to the Debug perspective.
«* Confirm Perspective Switch - &J

This kind of launch is associated with the Debug perspective.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

Do you want to open this perspective now?

[ | Remember my decision

Yes ] l No

b

Figure 4. Perspective Switch dialog window

2-1-3. Click Yes to open the debug perspective.

The debug perspective will open showing various views: threads, variables,
SDSoC_lab_design_main.c source program, Outline tab showing various objects created in the
source program, and the console.

Notice that the program is suspended at the main() entry on line 68.

Zyng 3-4 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx



Lab Workbook

2-1-4.

2-1-5.

2-1-6.

2-1-7.

Profiling Applications and Creating Accelerators
=" Debug - lab3/sre/SDSoC_lab_design_main.c - Xilinx S0x = =) gﬁ1
File Edit Source Refactor Mavigate Search Project Run Xilink Tools Window Help |
=R # o e MR DRBES -0 9~ o - ¢ | <~ sDx [% Debug|
1 Debug = i = =+ Variables =1 % Breakpoints ' Registers B XSCT Cons. B QEMU Cons.. =\ Modules =

+ % System Debugger using Debug_lab3.elf on Local (Local) (= E
4 3% APU Mame Type Valy *
4 ¢® ARM Cortex-A% MPCore #0 (Breakpoint main) o arge int ® =
= 000100568 man(k S050C_lab_design_main.c, line 68 * angy char ** it
= 0x00101<78 _start() o int 185¢
| =. * amay_c uint32.t* xR o
& ARM Cortex-A9 MPCaore #1 (Suspended) ] ¥
| & xc72020
|
| & SD5oC_lab_design_maine & B Outline ¢ SHR R
= U stdioh =
ing U stdlibh
. o s libh
- 2 int main(int arpgc, char® arpv[]) { = ® lab_designh 3
4 local variables g 2 grayh
.lnt i o sharpenh
o edge_detecth
7 ¥ st up memory structurss for moving frames of data ® sw_sds_counter_total : u
L uinti? t Farray ¢ = (uint32 t*) sds_alloc(FRAME_HEIGHT * FRAME WIDTH * sizeof(uint3z t}); & sw_sds_counter_num_calls : ur
uint® t *array g 1 = (uint8 t*) sds_alloc(FRAMF_HETGHT * FRAME WIDTH * sizeof(uint® t}); ® sw sds counter u
uint8 t *array g 2 = (uint8 t*) sds_alloc(FRAME_HETGHT * FRAME WIDTH * sizeof{uint® t}); c o .
uintd_t *array_g_3 = (uint8_t*) sds_alloc(FRAME_HETGHT * FRAME_WIDTH * sizeof(uints_t)); # sw_sds_clicstart)
#  aw_sds_clk_stop()
L # sw ava cou ovcles() -
& console = B~ 0 Memory &
TCF Debasg Virtual Terminal - ARM Cortex-A9 MPCore #1 I E |:' -

= Monitors

Figure 5. The Debug perspective

Select Window > Show View > Other and then expand the Debug folder.

Select TCF Profiler and click OK.

The TCF Profiler tab will open in the same window where Outline view was open.

In the TCF Profiler view, click the start button.

5% Outline | & TCF Profiler &2 =

Figure 6. Opening the TCF Profiler configuration

The Profiler Configuration window will open.

Leave Aggregate per function selected, and select the Enable stack tracing option and click OK.

The Aggregate per function option will group the same function calls collected together.

The Enable stack tracking option implements thread stack back tracing - essentially a summary of
how the program execution gets to where it is when sampled. This allows the determination of

parent/child relationships between functions.

The Max stack frames count field sets the number of frames to count backwards. This option is

useful only if the Enable stack tracing is enabled.

The View update interval (msec) field indicates at what interval the profile data will be updated in

the TCF Profiler window.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com

© copyright 2017 Xilinx

Zynqg 3-5



Profiling Applications and Creating Accelerators Lab Workbook

2 Profiler Configuration &J

[¥] Aggregate per function
Enable stack tracing

Max stack frames count: 3

View update interval (msec): 4000

OK ] l Cancel

b

Figure 7. Selecting the options

2-1-8. Click OK.

2-2.  Run the application and analyze the data.

2-2-1. Click on the Resume button (”E') on the tool buttons bar or Press F8 to start the execution.

2-2-2. Note the number of collected samples, when finished execution (for Zed), may vary depending on
your PC’s performance and connection speed with the board. For Zybo, press Pause button after
collecting about 3200 samples.

& TCF Profiler &

Profiler running. 3283 samples

Figure 8. The TCF Profiler view showing the collected number of samples

2-2-3. Click on the Maximize view button ( 5= Outline | & TCF Profiler o o = ).

Note that it shows three sections. The top-section shows various calls made after the execution
started. The first function called is _start. In the Called From sub-window, nothing is listed as it
the root function. In the Child Calls window, it shows main as the function being called from
_start.

Zyng 3-6 www.xilinx.com/university v
Xup@xilinx.com (A XI LINXm

© copyright 2017 Xilinx



Lab Workbook Profiling Applications and Creating Accelerators

Profiler running. 3283 samples

Address % Exc.. %Incl.. Function File Line
[00101c30 000  [HOOW “ciart
001005e4 .000 100 main SDSoC_lab_design_main.c 63
00100c18 |5.D2 533 sobel_filter edge_detect.c 76
0010138c ﬂ5.5? E sharpen_filter sharpen.c 63
00100a28 .6 362 sobel_operator edge_detect.c 34
00101278 @5.3 24.1 sharpen_operator sharpen.c 34
00101100 B4.5 34.5 window_getval edge_detect.c 200
00101874 [874 [B74  window_getval sharpen.c 188
0010176c n?.95 ]?.95 window_shift_right sharpen.c 165
00100ff8 [6.09 609 window_shift right edge_detect.c 177
00101630 3.38 3.38 linebuffer_shift_up sharpen.c 131
00100ebc 243 243 linebuffer_shift_up edge_detect.c 143
001010a8 191 191 window_insert edge_detect.c 192
00101154 191 191 rgb_2_gray rgb_2_gray.c 6
0010181c 1.88 1.88 window_insert sharpen.c 180
001016d0 1.09 1.09 linebuffer_getval sharpen.c 143
00100f5¢  1.06 1.06 linebuffer_getwval edge_detect.c 155
00100fb8 .548 548 linebuffer_insert_bottom edge_detect.c 167
0010172c 518 518 linebuffer_insert_bottom sharpen.c 155
Called From
00101c30 _start
Child Calls
00101c30 100 _start
001005e4 100" main SDSoC_lab_design_main.c 63
(a) Zed

www.xilinx.com/university Zynq 3-7

& XILINX.

Xup@xilinx.com
© copyright 2017 Xilinx



Profiling Applications and Creating Accelerators Lab Workbook

8= Outline & TCF Profiler 2

Profiler running. 3255 samples
Address % Exc.. %Incl.. Function File Line
00101c30 .000 100 _start
001005e4 .000 100 main SDSoC_lab_design_main.c 63
00100c18 ﬁﬂrﬁ 35.3 sobel_filter edge_detect.c 76
0010138c [5.06 @ sharpen_filter sharpen.c 63
00100a28 Ep.ﬂr 337 sobel_operator edge_detect.c 34
00101278 34.9 234 sharpen_operator sharpen.c 34
00101100 53 [153  window_getval edge_detect.c 200
00101874 [B.44 8.44 window_getval sharpen.c 188
0010176¢ (/.31 7.31 window_shift_right sharpen.c 165
oolo00ff8  |7.06 7.06 window_shift_right edge_detect.c 177
00100ebc 2.85 2.85 linebuffer_shift_up edge_detect.c 143
00101630 245 245 linebuffer_shift_up sharpen.c 131
00101028 2.27 2.27 window_insert edge_detect.c 192
00101154 212 212 rgb_2_gray rgb_2_gray.c 6
0010181c 2.02 202 window_insert sharpen.c 180
00100f5¢ 144 144 linebuffer_getval edge_detect.c 155
001016d0 1.44 144 linebuffer_getval sharpen.c 143
0010172c .614 614 linebuffer_insert_bottom sharpen.c 155
00100fb8 461 461 linebuffer_insert_bottom edge_detect.c 167
0010078c .184 184 dummyfill SDSoC_lab_design_main.c 134
Called From
00101c30 _start

Child Calls
00101c30 100 _start
001005e4 100 main SDSoC_lab_design_main.c 63

(b) Zybo

Figure 9. The TCF Profiler result

Address is the location of the function in memory that will match what is shown in the

Disassembly view.

% Exclusive is the percentage of samples encountered by the profiler for that function only
(excluding samples of any child functions). This can also be seen as exclusive percentage for that

particular function.

% Inclusive is the percentage of samples of a function, including samples collected during
execution of any child functions.

Function is the name of the function being sampled.

File is the name of the file containing the function.

Line indicates the line number where the function is found in the source file.

Zyng 3-8

www.xilinx.com/university
Xup@xilinx.com
© copyright 2017 Xilinx

& XILINX.



Lab Workbook Profiling Applications and Creating Accelerators
funaf) funa{)
start finish
|
funA funB funC funB funA
T

Execution Time

Figure 10. Understanding exclusive vs inclusive execution time

Exclusive: The amount of execution time spent in funA alone. Referencing the diagram below,
the exclusive time for funA is represented by the combined execution time of the funA blocks only.

Inclusive: The amount of execution time spent in funA and all of its sub-function calls. From the
diagram, this is the exclusive time of funA combined with the hatched area during which time
funB and funC are executing

,-/ 1 main
\ 100%
R ERRERRERRRRRRRRRRRRRERRR ARERRRRERRERRRRRRRRRRRR AR RN R AR
v v v
T
,-/ > sharpen_filter sobel_filter
\ 40.9% inclusive 54.9% intlusive
-:-:-:-:-:-:-:-:-:-:1;-:-:-:-:-:-:-:-:-:-1-'1'-1-.']:‘|*:|;t1:|
o 02 g ! sobel_filter
' 3 93 lés% sobel_operator e6.53%
\ = 35.08 inclusive
it 21.2% enclusie
+ [ linebuffer_insert_bottom
/-" o el 695%
indows_getval
\ 4 i ngf: Ve window_insert
' e1.95%

inclusive =" (i_child )+e_ own

i_child: the inclusive % of a child function
e_own: the exclusive % of this function
when the exclusive % = inclusive %

linebuffer_shift_up
el.93
linebuffer_getval
el.56%
window_shift_right
el 16%

2-2-4,

2-2-5.

2-2-6.

then the function is leaf node (does not call any
other functions)

Figure 11. Various functions execution times (humbers may vary)

Note that _start and main functions are 100% under the %inclusive column as all other functions
are called from main. They are essentially 0% under the %exclusive column as a negligible time
spent in those functions.

Looking under the %inclusive column, notice that the CPU spent about 44.5% (Zed) or 42.3%
(Zybo) of its time executing the sharpen_filter function and its sub-functions.

Click on the sharpen_filter entry to see that the source code window shows up.

You can view the source code and see that it processes some data and calls several functions.

& XILINX.

www.xilinx.com/university Zynqg 3-9
Xup@xilinx.com

© copyright 2017 Xilinx




Profiling Applications and Creating Accelerators

Lab Workbook

2-2-7. Switch back to the TCF Profile result window and observe that the sharpen_filter function calls
sharpen_operator, window_shift_right, linebuffer_shift_up, window_insert , linebuffer_getval, and
linebuffer_insert_bottom functions.

The same Child Calls window shows how much time the CPU spent in each of those functions.
2= Outline | & TCF Profiler 2

Profiler running. 3283 samples

Address % Exclusive | % Inciusive  Function File Line
00101c30 .000 ; _start

001005e4 .000 _m 1 main SDSoC_lab_design_main.c 63
00100c18 !6.02 m sobel_filter edge_detect.c 76
(0010138 _[557 WS snarpen fitter sharpen. 6
00100a23 Eﬂ6 M sobel_operator edge_detect.c 34
00101278 ﬁi MI sharpen_operator sharpen.c 34
00101100 {45 45 window_getval edge._detectc 200
00101874 H.N §J4 window_getval sharpen.c 188
0010176¢ [1.95 795 window_shift_right sharpen.c 165
00100ff8 &.09 _;5.09 window_shift_right edge_detect.c 177
00101630 !3.38 !3,38 linebuffer_shift_up sharpen.c 131
00100ebc |2.43 l2,43 linebuffer_shift_up edge_detect.c 143
001010a8 191 191 window_insert edge_detect.c 192
00101154 _1.91 191 o~ Fb_E_grpH » qu?w
Child Calls

00101278 Ml sharpen_operator sharpen.c 34
0010176¢ T .95 window_shift_right sharpen.c 165
00101630 !3.38 linebuffer_shift_up sharpen.c 131
0010181c 1.88 window_insert sharpen.c 180
001016d0 1.09 linebuffer_getval sharpen.c 143
0010172¢ 518 linebuffer_insert_bottom sharpen.c 155
(a) Zed

5= Outline & TCF Profiler &

Profiler running. 3255 samples

Address % Exc.. %Incl.. Function File Line
00101c30 .000 W I_start

001005e4 .000 [m 0 I main SDSoC_lab_design_main.c 63
00100c18 !5.46 m sobel_filter edge_detect.c 76
|0010138c |5.06 sharpen_filter sharpen.c 63
00100a28 @.4 7 sobel_operator edge_detect.c 34
00101278 ﬂ4,9 @.4 sharpen_operator sharpen.c 34
00101100 ESB HSB window_getval edge_detect.c 200
00101874 f_B,M F,M window_getval sharpen.c 188
0010176c [731  [731  window,_shift_right sharpen.c 165
0010018 [7.06  [.06  window_shift_right edge_detect.c 177
§010gete, 25 w25 b Jiocf UL PP b et g™ . .  pam gl |
Child Calls

00101278 E&A sharpen_operator sharpen.c 34
0010176¢ P31 window_shift_right sharpen.c 165
00101630 245 linebuffer_shift_up sharpen.c 131
0010181c 202 window_insert sharpen.c 180
001016d0 144 linebuffer_getval sharpen.c 143
0010172¢ 615 linebuffer_insert_bottom sharpen.c 155
(b) zZybo

Figure 12. Child Calls from sharpen_filter function

Zynq 3-10 www.xilinx.com/university (' XILINX
-~ &

xup@xilinx.com
© copyright 2017 Xilinx



Lab Workbook Profiling Applications and Creating Accelerators

2-2-8.

2-2-9.

Looking at the results sorted in the %inclusive column, we can see that sharpen_filter may be a
good candidate for the hardware acceleration. The function and sub-functions should be carefully
considered to determine suitability for acceleration. Typical candidates for acceleration are
functions that can process a stream of data, or can be implemented in parallel, without excessive
resource utilization.

Click on the %Exclusive column to sort the results.

You can see that the CPU spends a large proportion of the total time in the sharpen_operator
function. This may be a good candidate for acceleration.

2-2-10. Click on the Disconnect button (¥¥) to terminate the session.

Accelerate sharpen_filter and Profile Step 3

3-1.

Add sharpen_filter function for hardware acceleration. Change SDSCC
compiler setting to define TIME_SHARPEN symbol. Build the project and
analyze the data motion network.

Since this will take time to build, you will import lab3a project from the
source\lab3 folder and then profile the application. The precompiled project
has sharpen_filter already added for hardware with the compiler setting
added.

Skip to 3-2 if you are continuing to building the project.

3-1-1. Switch back to the SDx perspective.

3-1-2. Select File > Import

3-1-3. Double-click on Import Existing Projects into Workspace.

3-1-4. In the Import Projects window, click on the Select archive file option, then click the Browse button
and then browse to c:\xup\SDSoC\source\lab3, select lab3a.zip and click Open.
Make sure that lab3a is checked in the Projects window.

3 www.xilinx.com/universit Zynq 3-11
& XILINX. / ynd

Xup@xilinx.com
© copyright 2017 Xilinx



Profiling Applications and Creating Accelerators Lab Workbook

I EE Import l | [S] |_i:h]1
Import Projects E/L
Select a directory to search for existing Eclipse projects. -
() Select root directory: - Browse...
@) Select archive file: Chxup\SDSoC\source\lab3\lab3a.zip A l Browse... ]
Projects:
I Iab3a (lab3a) Select All

Figure 13. Importing an existing project in the workspace

Skip to 3-3 skipping continue building project.

3-2. Continue building the project.

3-2-1. Switch back to the SDx perspective by clicking[z .

Make sure that the Project Overview tab for the lab is displayed.

3-2-2. Click on the “+" (* |Eaty ) sign in the Hardware Functions area to open up the list of functions
which are in the source files (It may take little longer to show up).

3-2-3. Select sharpen_filter function and click OK.
3-2-4. Double-click the SDSoC lab_design_main.c under lab3 > src.

3-2-5. Note several conditional compilation statements around lines 83 to 103. When a symbol is
defined, and the condition is true, these statements will allow the corresponding function(s) to be
timed.

3-2-6. Right click on lab3 in the Project Explorer window and select C/C++ Build Settings.
3-2-7. Select Symbols under SDSCC Compiler and click “+” button to define a symbol.
3-2-8. Enter TIME_SHARPEN in the field and click OK.

3-2-9. Click OK again.

Zyng 3-12 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx



Lab Workbook

Profiling Applications and Creating Accelerators

| & Tool Settings |l Devicesl

Build Steps

Build Artifactl Binary Parser| * | *

ar

4 B SDSCC Compiler
|@ Symbols

5 \Warninme

Defined symbols (-D)

-

«* Enter Value

ot

Defined symbols (-D)

I TIME_SHARPEN I

OK

Cancel

Figure 14. Defining symbol for conditional compilation

This may take about 40 minutes.

Analyze the data motion network.

3-3-1. Click on the Data Motion report link and analyze the result.

3-2-10. Check Generate bitstream and Generate SD card image options

3-2-12. Right-click the top-level folder for the project and click on Build Project in the menu.

3-2-13. When build process is done, select the lab3 tab so you can access Data Motion link.

Data Motion Network
Accelerator | Argument | IP Port | Direction | Declared Size(bytes) | Pragmas Connection
sharpen filter 1 |input input r |IN 2073600%*1 ps7_S_AXI ACP:AXIDMA SIMPLE
output output r| OUT 2073600%*1 ps7_S_AXI ACP:AXIDMA SIMFLE

Accelerator Callsites

3-2-11. Right-click the top-level folder for the project and click on Clean Project in the menu.

. Transfer Size Paged or Datamover Setup Time Transfer Time(CPU
Accelerator Callsite IP Port (bytes) Contiguous (CPU cycles) cycles)
sharpen filter 1|SDSoC lab design main.c:93:3 | input r | 2073600 contiguous 1015 2419984
output r | 2073600 contiguous 1015 2419984
(a) Zed
www.xilinx.com/university Zyng 3-13

& XILINX.

Xup@xilinx.com
© copyright 2017 Xilinx




Profiling Applications and Creating Accelerators

Lab Workbook

Data Motion Network
Accelerator | Argument | IP Port |Direction | Declared Size(bytes) | Pragmas Connection
sharpen_filter_1 | input input_r |IN 2073600%1 ps7_S_AXI ACP:AXIDMA_SIMPLE
output output_r | OUT 2073600%1 ps7_S_AXI ACP:AXIDMA_SIMPLE
Accelerator Callsites
Accelerator Callsite IP Port Tm;:]i{:":s)s ize Cii%:;uzfls Datar(n((j);;};‘ ‘:S‘e:]ll [;)Time 1;?;{32;31‘339
sharpen_filter_1|SDSoC_lab_design_main.c:93:3 |input_r |2073600 contiguous 1015 3457121
output_r|2073600 contiguous 1015 3457121

(b) Zybo

Figure 15. Data Motion network

FIXED 1O

3-4. Open Vivado IPI design.

3-4-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > SDx 2017.2 > Vivado
Design Suite > Vivado 2017.2

3-4-2. Open the design by browsing to C:/xup/SDSoC/labs/lab3/Debug/_sds/p0/_vpl/ipi/ipiprj if you
continued building the project or C:/xup/SDSoC/labs/lab3a/Debug/_sds/p0/_vpl/ipi/ipiprj if you
have imported the project and selecting ipiprj.xpr.

3-4-3. Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

3-4-4. Click on the show interface connections only (':') button followed by click on the regenerate
layout (C) button.

3-4-5. Follow through both input and output data paths of the sharpen_filter_1 instance and observe that
they are connected to the S_AXI_ACP port of PS7.

'H ad_ic_ps? M AXI GRO L
oot +'—g{+ ssoance ZYNC - i
Figure 16. Built design
Notice that two data movers are used; one for input and another for output data. They both
connectto S_AXI_ACP of PS7 through the axi_ic_ps7_S_AXIl_ACP instance. The two data
movers and the sharpen_filter_1 if instance can be configured by their S_AXI_LITE interfaces
which are connected to the ps7 via the axi_ic_ps7_M_AXI_GPO instance.

3-4-6. Close Vivado by selecting File > Exit. Do not save the block design.

3-5. Connect the board and power it ON. Start the Debug session. Add the TCF
Profiler view and configure it to include the Aggregate per Function option.

Zyng 3-14 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx




Lab Workbook Profiling Applications and Creating Accelerators

3-5-1. Connect the board and power it ON.

3-5-2. Right-click on the lab3 entry in the Project Explorer tab and select Debug As > Launch on
Hardware (SDSoC Debugger)

3-5-3. Click Yes to open the debug perspective, if prompted.
Notice that the program is suspended at the main() entry on line 75 (instead of 68 in Figure 5).

If you scroll up into the main() function window, you will notice code is added on lines 63 to 69
which declares _p0_sharpen_filter_1 noasync function prototype.

#ifdef _ cplusplus

extern "C" {

» #endif

void _p@_sharpen_filter_1_noasync(uint8_t input[2073600], uint8_t output[2073600]);
/ #ifdef _ cplusplus

¥

9 #endif

o T T o T T T o Y i
[W I =" B B s L R W 5 R O W'

Figure 17. Function prototype for the accelerated function

3-5-4. Add TCF Profiler view as before, and configure the TCF Profiler view to include the Aggregate
per function option.

3-6. Run the application and analyze the data.
3-6-1. Press the Start button of the TCF Profiler.

3-6-2. Change the update interval setting to 1000 (for Zed only) since we want to collect samples at finer
resolution.

2 Profiler Configuration &J

v| Aggregate per function
v | Enable stack tracing

Max stack frames count: 8|

View update interval (msec): 1000

OK ] | Cancel ‘

ke

Figure 18. Setting update interval to 1 second (1000 msec)

3-6-3. Click on the Resume button (Green box) on the tool buttons bar to start the execution.

3-6-4. Wait for the execution to complete.

Note that the number of collected samples may vary depending on your PC’s performance and
connection speed with the board.

v Xilinx.com/universit Zyng 3-15
£ XILINX e /
© copyright 2017 Xilinx



Profiling Applications and Creating Accelerators Lab Workbook
@ TCF Profiler 22 5= Outline & TCF Profiler &2

Profiler running. 2375 samples Profiler running. 3002 samples

(a) Zed (b) Zybo

Figure 19. The TCF Profiler view showing the collected number of samples

3-6-5. Click on the Maximize view button.

= Outline @ TCF Profiler

Profiler running. 2404 samples
Address % Exc... I}ﬁl‘ncl... Function File Line
00101eac .000 100 _start
0010154¢ .000 997 main SDSoC_lab_design_main.c 70
00100eec TE.QS 96.0 edge_detect.c 76
00100cfc ES 62.7 sobel_operator edge_detect.c 34
001013d4 E.S 25.8 window_getval edge_detect.c 200
001012cc 12.? 12.7 window_shift_right edge_detect.c 177
00101190 [4.53 4.53 linebuffer_shift_up edge_detect.c 143
0010137¢c |3.45 345 window_insert edge_detect.c 192
00101428 341 341 rgb_2_gray rgb_2_gray.c 6
00101230 262 2.62 linebuffer_getval edge_detect.c 155
0010128c .957 957 linebuffer_insert_bottom edge_detect.c 167
001017d0 .291 291 durmmyfill SDSoC_lab_design_main.c 141
0010eblc .000 208 cf_wait
0010898 .166 208 axi_dma_simple_wait

(a) Zed

B Qutline @ TCF Profiler 2

Profiler running. 3002 samples
Address % Exc... E}El‘ncl... Function File Line
:00101leac .000 100 _start
0010154c¢ i SDSoC_lab_design_main.c 70
00100eec sobel_filter edge_detect.c 76
00100cfc sobel_operator edge_detect.c 34
001013d4 [26.7 26.7 window_getval edge_detect.c 200
001012cc ﬂi[} ﬂ3.[} window_shift_right edge_detect.c 177
0010137c |3.89 |3.89 window_insert edge_detect.c 192
00101190 |3.43 |3.43 linebuffer_shift_up edge_detect.c 143
00101428 3.26 3.26 rgb_2_gray rgb_2_gray.c 6
00101230 2.53 253 linebuffer_getval edge_detect.c 155
0010128c .866 866 linebuffer_insert_bottom edge_detect.c 167
001017d0 233 233 dummuyfill SDSoC_lab_design_main.c 141
(b) Zzybo

Figure 20. The TCF Profiler result

Note that _start and main functions are 100% under the %inclusive column as all other functions

are called from main. Now the CPU spent most of its time executing the sobel_filter function and

Zyng 3-16

www.xilinx.com/university

Xup@xilinx.com

© copyright 2017 Xilinx

& XILINX.



Lab Workbook Profiling Applications and Creating Accelerators

its sub-functions. You don't see _p0_sharpen_filter_1 call (the hardware accelerator) since very
little time is spent in that function.

3-6-6. Click on the Disconnect button (¥¥) to terminate the execution.

Profiling Using sds_lib API Step 4

4-1. Re-launch the application in the Debug perspective. Start the terminal
session and run the application to the end.

4-1-1. Inthe Debug view, right-click on the disconnected entry and select Relaunch.

5% Debug &2 % o110 |7 @ |
¥, System Debugger Local Host lab3.elf (Local: Disconnected) |
Copy Stack a

Find... &

el Ty =, T o B Y
e r S A -:I_J\: e ,

g gt 4 S e

r

%% Remove All Terminated

%, Edit System Debugger Local Host lab3.elf...
E, Edit Source Lookup...

¥: Terminate and Remove

Terminate/Disconnect A
Figure 21. Re-launching the debugger
4-1-2. Click on the SDK Terminal window and make a connection with an appropriate COM port OR use

any other terminal emulator program like TeraTerm, Putty, HyperTerminal. Choose 115200 as the
baud rate.

4-1-3. Click on the Resume button.

4-1-4. You will see dots being displayed as the execution is continuing. You will also see progress is
made in the TCF Profiler view.

Wait for about one minute to complete the execution and the result is displayed in the Terminal
window.

Running frame operations...

ﬁuerage W cycles for all of the image functions: 16215720064
Average SW cycles for sharpen: 76954828

(&) Zed

v Xilinx.com/universit Zynq 3-17
£ XILINX e y
© copyright 2017 Xilinx



Profiling Applications and Creating Accelerators Lab Workbook

unning frame operations...

-Uerage EW cycles for all of the image functions: 16234674592
verage S5W cycles for sharpen: 135683578

(b) Zybo

Figure 22. The sharpen function profiling

4-1-5. Click on the Disconnect button ().

Add sobel filter to Accelerators and Profile Step 5

5-1. Add sobel_filter function for hardware acceleration. Change SDSCC
compiler setting to define TIME_EDGE_DETECT symbol. Build the project.
Since this will take time to build, you will import lab3b project from the
source\lab3 folder and then profile the application. The precompiled project
has both the sharpen_filter and sobel_filter already added for hardware
with the compiler setting added.

5-1-1. Switch back to the SDx perspective.

5-1-2. Select File > Import

5-1-3. Double-click on Import Existing Projects into Workspace.

5-1-4. In the Import Projects window, click on the Select archive file option, then click the Browse button
and then browse to c:\xup\SDSoC\source\lab3, select lab3b.zip and click Open.
Make sure that lab3b is checked in the Projects window.

5-1-5. Click Finish.
The project will be imported and the sobel_filter and sharpen_filter function entries will be
displayed in the HW Functions window.

5-1-6. Double-click on the project.sdx under lab3b to access the SDx Project Settings.

5-1-7. Uncheck the Generate Bit Stream and Generate SD Card Image options.

5-1-8. Right Click on the lab3b project folder, select Debug As, and Launch on Hardware

5-1-9. Click Yes to switch to the debug perspective if prompted.

5-1-10. Select Window > Show View > Other and then expand the Debug folder. Select TCF Profiler
and click OK.

Zyng 3-18 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx



Lab Workbook Profiling Applications and Creating Accelerators

5-1-11. In the TCF Profiler view, click the start button, enable the Aggregate per function option and

5-2.

5-2-1.

5-2-2.

5-2-3.

5-2-4.

Enable stack tracing. Click OK.

Start serial communication. Profile the complete application and observe
the improvements.

Connect a terminal as before. (Terminal Tab, TeraTerm, PuTTY, HyperTerminal etc.)

Click on the Resume button.

You will see dots being displayed as the execution progresses. You will also see progress is
made in the TCF Profiler view.

The execution should complete in under a minute and the result is displayed in the Terminal
window.

Running frame operations...

With TCF Profiler

ﬁuerage €W cycles for all of the image functions: 20802521508
Average SW cycles for sharpen: a7z
Average SW cycles for edge_detect: 22451589

(a) Zed

Running frame operations...

With TCF Profiler

ﬁuerage W cycles for all of the image functions: 2785409968
Average SW cycles for sharpen: L2239
Average 3W cycles for edge_detect: 25478729

(b) Zybo

Figure 23. The sharpen and sobel filter functions profiling
Switch to the TCF Profiler tab and see the results.
Note that now CPU spends time in rgb_2 grap function. The _p0_sobel_filter_0 takes very little

time and you don't see the _p0_sharpen_filter_0 entry does not appear at all since it's execution
time is so short that the profiler does not see it.

v www.xilinx.com/university Zyng 3-19
(‘ XI LINXQ Xup@xilinx.com

© copyright 2017 Xilinx



Profiling Applications and Creating Accelerators Lab Workbook

E= Qutline & TCF Profiler &

Profiler running. 107 samples

Address % Exc.. % Incl.. Function File Line
00102034 .000 100 _start

001015a0 .000 94.4 main SDSoC_lab_design_main.c 77
0010147c |88.7 | 38.7 | rgb_2_gray rgb_2_gray.c 6

00101900 }5.6[} ﬁ,GU dummyfill SDSoC_lab_design_main.c 148
0010ec%c .000 4.67 cf_wait

0010fa18 M.67 167  axi_dma_simple_wait

(a) Zed

E= Qutline | & TCF Profiler &2

Profiler running. 137 samples

Address % Exc.. %Incl.. Function File Line
00102034 000  [M00 start

00101520 000  [963 " main SDSoC_lab_design_ main.c 77
0010147c [805" | [005 | rgb_2_gray rgb_2_gray.c 6

00101900 ]5.83 |5.83 dummyfill SDSoC_lab_design_main.c 148
0010ec9c .000 3.65 cf wait

0010fal8 |3.65 3.65 axi_dma_simple_wait

(b) Zybo
Figure 24. Profiled data

5-2-5. Click on the Disconnect button (¥¥) to terminate the execution.
5-3. Profile the application without running the profiler and compare the result.
5-3-1. In the Debug view, right-click on the disconnected entry and select Relaunch
5-3-2. This time do not click on the start button of the TCF Profiler.
5-3-3. Click on the Resume button.
5-3-4. You will see dots being displayed quickly as the execution is continuing.
5-3-5. Notice the terminal output.
unning frame coperations...
Without TCF Profiler Running
-uerage EW cycles for all of the image functions: 677989244
verage %W cycles for sharpen: 3145
verage SW cycles for edge_detect: 2781494
(a) Zed
Zyng 3-20 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx



Lab Workbook Profiling Applications and Creating Accelerators

Running frame operations...

Without TCF Profiler Running

ﬁuerage W cycles for all of the image functions: 627858452
Average SW cycles for sharpen: 3324
Average SW cycles for edge_detect: 13512682

(b) Zybo

Figure 25. The terminal window output

Compared to output with the profiler running, the execution takes significantly fewer cycles.
5-3-6. Click on the Disconnect button (¥¥) to terminate the execution.
5-3-7. Close SDx by selecting File > Exit

5-3-8. Turn OFF the power to the board.

Conclusion

In this lab, you profiled a pure software application which consist of three major functions. You saw the
amount of time those three functions took to execute. Then you ported one of the most time-consuming
function into hardware and profiled again. You then ported second most time-consuming function into
hardware and profiled again and observed the performance improvement. You used the TCF profiler and
sds_lib API to collect the data.

v www.xilinx.com/university Zynqg 3-21
(‘ XI LINXQ Xup@xilinx.com

© copyright 2017 Xilinx



