Lab Workbook Creating a System with SDx

Creating a System with SDx

Introduction

This lab guides you through the process of using SDx to create a new SDSoC project using available
templates, marking functions for hardware implementation, building a hardware implemented design, and
running the design on either the Zed or Zybo board.

Objectives

After completing this lab, you will be able to:

e Create a new SDx project for your application from a number of available platforms and project
templates

e Mark functions for hardware implementation

e Build your project to generate a bitstream containing the hardware implemented function and an
software executable file that invokes this hardware implemented function

e Test the design in hardware

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises four primary steps: You will create an SDx project, mark two functions for hardware
implementation, build the design with the hardware accelerators, and, test the design in hardware.

General Flow for this Lab

Step 1: Step 2: Step 3:
Create an Build the Test the

SDx Project Design with Design in
Hardware Hardware

Accelerators

v www.xilinx.com/university Zyng 1-1
i‘ XI LINXJ Xup@xilinx.com

© copyright 2017 Xilinx

Creating a System with SDx

Lab Workbook

Create an SDx Project

Step 1

1-1. Launch SDx and create a project, called lab1, using one of the available
templates, targeting the Zed or Zybo board.
1-1-1. Open SDx by selecting Start > All Programs > Xilinx Design Tools > SDx 2017.2 > SDx IDE
2017.2
The Workspace Launcher window will appear.
1-1-2. Click on the Browse button and browse to c:\xup\SDSoC\labs, and click OK.
- Eclipse Launcher % w] ndows Menu x=)
Select a directory as workspace
Xilinx 5Dx uses the workspace directory to store its preferences and development artifacts.
Workspace: C\xup\SDSoC\labs - |
["] Use this as the default and do not ask again
0K | l Cancel
[— e —)
Figure 1. Selecting a workspace
1-1-3. Click OK.
The SDx development environment window will appear showing the Welcome tab.
labs - SO - Xilino SDx —ae e =IIE
File Edit Mavigate Search Project Run Xilime Window Help
s ™1 Welcome &1) A =
X| LlNX Xilinx SDx™ IDE
ALL PROGRAMMABLE.
C.r.\;;te a new Xilinx® SDx™ prc]zen Go through tutorials "
Adl.ur remove platform repositones g;:ﬂ mare on the Weh
Create a new Xilinx@ SOK project
i
I.r.ll.pl;l L an existing project
Figure 2. The SDx development environment with Welcome tab
Zyng 1-2 www.xilinx.com/university

xup@xilinx.com
© copyright 2017 Xilinx

& XILINX.

Lab Workbook

Creating a System with SDx

1-1-4.

From here you can create a new project, create an application project, import an existing project,
and access the tutorials and web resources by clicking on the desired link.

Click on the Create SDx Project link and Create a New SDx Project form will appear. Enter lab1

in the Project name field.

«* New Project l—‘—l—]@ et
Create a New 5Dx Project Y 4

Enter a name for your SDx project and specify a location where the
project files will be stored.

Project name: labl

Use default location
Chxup\SDSoC\labs\labl Browse...

default «

‘/?3' < Back Finish Cancel

(<

Figure 3. Entering project name

You could have clicked Click X on the Welcome tab to close it, and you would have seen the
empty workspace in the background. From there, you would have selected File > New > Xilinx
SDx Project to open the New Project GUI. You then would have entered lab1 as the project

name.

1-1-5. Click Next to see Choose Hardware Platform window showing various available platforms.

+# New Project e [S

Choose Hardware Platform

»

The platform defines the hardware that will execute your application.

Platforms (6) Eilter

Find:

MName Version Board Family Part Vendor Type

@ microzed 1.0 microzed zyng xc/z010 xilinkcom SDSoC
@ zc702 1.0 zc702 zyng xc7z020 xilinkcom SDSoC
@ zc706 1.0 zc706 zyng xc7z045 xilinkcom SDSoC
@ zcul02 1.0 zcul02 zynguplus xczu9eg xilink.com SDSoC
@ zed 1.0 zed zyng xc7z020 xilink.com SDSoC
@ zybo 1.0 zybo zyng xc/z010 xilinkcom SDSoC

Add Custom Plaﬁormm] [Manage Repositolies.‘.] IAdd Devices/Platforms...

Description

Basic platform targeting the ZedBoard, which includes 512 MB of DDR3, 256 Mb
Quad-5PI Flash and 4 GB SD card. More information at http://www.zedboard.org

Repository: C/Xilinx/SDx/2017.2/platforms/zed

L

Figure 4. Available hardware platforms

1-1-6. Select either zybo or zed (depending on the board you are using) and click Next.

v www.xilinx.com/university
i‘ XI LINX” Xup@xilinx.com

© copyright 2017 Xilinx

Zyng 1-3

Creating a System with SDx

Lab Workbook

1-1-7. In the Choose Software Platform and Target CPU window select Linux as the target OS, and click
Next.
-~ New Project EERX)
Choose Software Platform and Target CPU 7 4
Setup your software platform and target CPU. d
Software Platform
System configuration: [Linux ']
Runtime: [C;’C++ v]
Target
cPU: 290]
0Ss: Linux OS
[Linux Root File System: Browse...
[] Shared Library
Figure 5. Naming the project and selecting target platform and OS
The Templates page appears, containing source code examples for the selected platform.
1-1-8. Select Matrix Multiplication and Addition (area reduced) in case of zybo or Matrix

Multiplication and Addition in case of zed as the source.

r

= New Project

(S > S

Templates

Select a template to create a new SDx project.

Available Templates:

Empty Application
4 hls_lib
Synthesizeable FIR Filter
4 xc7z010
Matrix Multiplication (area reduced) '
| Matrix Multiplication and Addition (area reduced)|
Matrix Multiplication Data Size (area reduced)

Pipelined Matrix Multiplication (area reduced)
Array zero_copy ('Short’ build time)
Color Space Conversion - RGB/HSV
Emulation Example
Matrix Multiplication and Addition
Matrix Multiplication Data Size

e

< Back

Matrix Multiplication and Addition

Implementation of a 32x32 matrix multiplication
followed by a matrix addition using 4-byte float
values. Executes both matrix mult and add in
software, then in hardware, and verifies the result. By
default the functions 'mmult()’ and 'madd()’ are
marked for hardware, and you can build the project.
SDSoC pragmas are used to specify sequential access
for ‘'mmult()’ function resulting in FIFO interfaces. No
pragmas are specified for 'madd()’ function resulting
in default BRAM interfaces.

Mext = Finish l l Cancel

Figure 6. Selecting from available templates

1-1-9. Click Finish.

Zyng 1-4

www.xilinx.com/university
Xup@xilinx.com

& XILINX.

© copyright 2017 Xilinx

Lab Workbook Creating a System with SDx

1-2.

1-2-1.

The created project will be displayed. In the left, you will see Project Explorer under which the
lab1 project directory will be displayed (you may have to expand the folder). It shows the Includes
and src folders. The src folder contains the source files which were copied from the template
source directory located at <SDx_install_directory>\samples\<template_name>. The lab1 folder
also shows the project.sdx project file. Double-clicking on it will display what you see in the right-
side pane.

In the SDx Project Settings pane, you see General, Hardware Functions, and Options areas.
From here you will be able to change options, identify/modify the function(s) that will be
implemented in hardware, setup for debugging and estimation, and access various reports.

— ~
~ labs - SDx - lab1/project.sdx - Xilinx SDx . - =HI=h X
File Edit Navigate Search Project Run Xilinx Window Help
i~ |®~& - G@i%~0~ v~ Quick Access ;| & | ()
[Project Explorer &2 = B |Kiab1 =2 =08 %Eowx —0O
s v ~ 5 = -
5 bl % SDx Project Settings Active build configuration:|Debug +|® An outline is not
S available.
il Includes General Options
4 (= src
. = sd_card_prebuilt Project name: labl Data motion network clock frequency (MHz): | 142.86 -
(1 > 8 madd.cpp Project type: SDsoC "] Generate emulation model
+ [main.cpp Platform: zed B |¥] Generate bitstream 3
- (4 mmultcpp H [¥] Generate SD card image -
. B mmultadd.h Runtime: C/C+s i oo g] |
K project.sdx System configuration: Linux B nsert performance monitor N
I:| Enable event tracing I
CPU: a9 0 [] estimate performance
Os: Linux 05 Root function: main B -
|
Hardware Functions AlF R I
|
T b Name Clock Frequency (MHz) Path
- mmult 142.86 src/mmult.cpp
=~ Reports & cl] madd 142.86 src/madd.cpp i
= labl
{21 Problems B Console [Properties |[E] SDx Log & | E SDx Terminal & = 5 4 Target Connections 5 = B
18:24:83 INFO : Validating SDSoC License... - &
18:24:06 INFO : License available for SDSoC » = Hardware Server
18:24:06 INFO : Validating SDAccel License... - &= Linux TCF Agent
18:24:07 INFO : XSCT server has started successfully. . & QEMU TcfGdbClient
18:24:87 INFO : Successfully done setting XSCT server connectil=
18:24:88 INFO : License for SDAccel is unavailable
18:24:88 INFO : Successfully done setting SDK workspace L
| [D

Figure 7. Created SDx project

Managing functions to accelerate using various buttons.

Notice the two functions, mmult and madd, are already targeted for hardware acceleration. Also,
the data movement frequency selected is 142.86 MHz for Zed and 100.00 MHz for Zybo. You can
change the frequency by clicking in the corresponding field and selecting appropriate frequency.

Name Clock Frequency (MHz) Name Clock Frequency (MHz)
mmult| 142.86 - mmult| 100.00 -
madd |166.67 madd |25.00

(@) Zed (b) Zybo

Figure 8. Available frequencies

i' XI LINX www.xilinx.com/university Zyng 1-5

Xup@xilinx.com
© copyright 2017 Xilinx

Creating a System with SDx Lab Workbook

1-2-2. You can add additional functions by click on the Add HW Functions... (* IE]x) button. When
clicked, the source files will be scanned and the available functions in the project will be displayed
along with possible candidates.

== Add Hardware Functions l = ‘ (=] Li&r

e

Select functions for hardware acceleration

*

Matching elements:

@ init_arrays(float *, float *, float *, float *, float *)
@ madd_golden(float # float * float *)

@ main(int, char * #)

@ mmult_golden(float *, float *, float *)

o mmult_test(float *, float *, float *, float *, float *)
@ result_check(float *, float #)

Qualified name and location:

@ init_arrays(float *, float *, float *, float *, float *) - /labl/src/main.cpp

Figure 9. Functions in the project
1-2-3. Click Cancel since we do not want to add any other functions.

1-2-4. You can remove an already added functions by selecting their corresponding entries and click on
the Remove HW Functions (* E) button.

1-2-5. Expand the lab1 folder in the Project Explorer pane and notice that the functions are marked for
hardware implementation in madd.cpp and mmult.cpp files.

[t5 Project Explorer &2 B&|Y v=0O

+ ¥ Includes
4 (= 5IC
4 [madd.cpp
® mmultadd.h
 stdlib.h
Emadd{ﬂoat[]. float[], float[]) : void [H]
- [l main.cpp
4 [g mmult.cpp
I mmultadd.h
H stdio.h
o stdlib.h
mmult{float[]. float(], float[]) : void [H]
> [B mmultadd.h
A& project.sdx

Figure 10. Expanded project view indicating the selected functions for hardware
implementation

Zyng 1-6 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx

Lab Workbook Creating a System with SDx

Build the Design with Hardware Accelerators Step 2

2-1.

2-1-1.

Select Release configuration and build the project. When done, analyze the
data motion network through the report and built hardware through Vivado
IPI.

Right-click on lab1 in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter —maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OK.

The above step is optional but recommended otherwise Vivado invocation under the hood during the
hardware generation will use all the cores bringing your machine unresponsive to do anything else.

2-1-2. Right-click on lab1l in the Project Explorer and select Build Configurations > Set Active to see
possible configurations and what is currently selected.
Build Configurations | ¥ 1 Debug Set Active 4
Run As 2 Release Manage...
Debug As 4 Build All
Team 4 Clean All
Compare With 4 Build Selected...
Figure 11. Selecting build configuration
2-1-3. Select Build Configurations > Set Active > Release
You can also select the configuration by clicking on the drop-down button of the Active build
configuration field of the SDx Project Settings pane.
Active build configuration:lDebug 'J
Debug |
Rolease
Figure 12. Available configurations and selecting them
The Release build configuration uses a higher compiler optimization setting than the Debug build.
Building the project and generating the results in the next step may take 20 to 30 minutes.
Alternatively, you can import provided pre-built files into your workspace and load the results.
2-1-4. Right-click on labl and select Build Project
The output from the SDx compiler can be viewed in the Console tab. The functions selected for
hardware are compiled into IP blocks using Vivado HLS. The IP blocks are then integrated into a
Vivado design based on the selected base platform. Vivado will carry out synthesis, and place
and route tools to build a bitstream. The software functions that have been moved to hardware
will be replaced by function calls to the hardware blocks, and the software will be compiled to
generate an ELF executable file.
This may take about 50 to 60 minutes.
You can also load the results by importing the pre-built files into your workspace with these steps:
v www.xilinx.com/university Zynq 1-7
(‘ X”—INXQ Xup@xilinx.com

© copyright 2017 Xilinx

Creating a System with SDx

Lab Workbook

2-1-5.

Select File > Import and then select General > Existing Projects into Workspace and click

Next.

Select Select archive file and click Browse to navigate to c:\xup\SDSoC\source\labl

Select labl_prebuilt.zip, and click Open

Click Finish.

Expand the lab1 (or lab1_prebuilt if you have imported the project) directory in the Project
Explorer tab and observe that Release folder is created along with virtual folders of Binaries and
Archives. Expanding the Release folder shows _sds, sd_card, src folders along with lab1.elf
((or lab1_prebuilt.elf if you have imported the project) [executable], labl.elf.bit (or

lab1l prebuilt.elf.bit if you have imported the project) [hardware bit file] and several make files.

4 |l=% labl
- #¥ Binaries
» B Archives
i Includes
4 (= Release
(= _sds
> = sd_card
> = SIC
. %5 lablelf - [arm/le]
=| labl.elf.bit
makefile
objects.mk
sources.mk
4 = 5rC
> g madd.cpp
- lgl main.cpp
> ld mmult.cpp
> [mmultadd.h
A projectsdx

(a) Generated

4 |l=% lab1_prebuit

- #¥ Binaries
- B Archives
i Includes
4 (= Release
(= _sds
> = sd_card
> = SIC
: %5 labl_prebuitelf - [arm/le]
=| labl_prebuitelf.bit
makefile
objects.mk
sources.mk
4 = 5rC
> g madd.cpp
- lgl main.cpp
> ld mmult.cpp
> [mmultadd.h
A projectsdx

(b) Imported

Figure 13. Project Explorer folders

The sd_card folder contains files and sub-directory (depending on the target OS) which can be
copied to a SD card and then used to boot the system to test the design in hardware.

The src folder contains object and debug information carrying files of the main function as well as

the hardware target files.

The _sds folder contains various sub-folders and files generated by SDx as well as other

underlying used tools.

2-1-6. Expand the _sds folder.

Zyng 1-8

www.xilinx.com/university

Xup@xilinx.com

© copyright 2017 Xilinx

& XILINX.

Lab Workbook Creating a System with SDx

4 (= Release
4 (= sds
> = swstubs
= trace

» % iprepo
2% po
» 2 reports
: Lﬁ VNiSs

Figure 14. The generated _sds folder content

Notice that there are six sub-folders out of which four are greyed-out and two are shown as
normal. The directories which are not greyed-out (swstubs and trace), indicate the folders and
their contents were generated by SDx. The greyed folders (iprepo, p0, reports, vhis) were
generated by the underlying tools.

The swstubs contains various source files to handle data motion as well as communication with
the hardware accelerators. It also contains various stub files and generated libraries.

The iprepo and vhlis folders are generated by Vivado HLS. The iprepo has a sub-folders for each
hardware function. The vhis folder contains the complete HLS solution for each function. It also
contains tcl files used to generate the solution.

The pO folder consists of ipi and sd_card sub-folders which includes the Vivado IPI project
(synthesis and implementation tcl files and results) and the generated SD card contents. The
project file, located in ipi sub-folder, has an extension of xpr. The project can be opened with
Vivado to display the block diagram of the generated system-level hardware.

The reports folder consists of log files and the data_motion.html containing the data motion
network report.

2-1-7. Another pane, Reports, is created below the Project Explorer pane. Select the Lab1 entry in the
Project Explorer pane and see the available html and report files.

-~ Reports 2 S B
4 = labl
4 (= Release
|2 Data Motion Network Re
2] Compilation Log (07 Sep 20:

4 mmult

|2 Compilation Log (07 Sep 20

|2 HLS Report (07 Sep 2017 0
A madd

2 Compilation Log (07 Sep 2017 05:.0

I2] HLS Report (07 Sep 2017 05:07

Figure 15. The Reports pane

2-1-8. Under the Reports pane, double-click on the Data Motion Network Report entry.

The report shows the connections made by the SDx environment and the types of data transfers
for each function implemented in hardware. You can also open this report file by double-clicking
data_motion.html entry in Release > _sds > reports of Project Explorer.

v Xilinx.com/universit Zyng 1-9
£ XILINX e /
© copyright 2017 Xilinx

Creating a System with SDx Lab Workbook

Data Motion Network

Accelerator | Argument | IP Port | Direction | Declared Size(bytes) | Pragmas Connection
madd_1 A A IN 1024%4 mmult_1:C
B B IN 1024%4 ps7 S AXI ACP:AXIDMA SIMPLE
C C ouT 1024%4 ps7 S _AXI ACP:AXIDMA SIMPLE
mmult 1 A A IN 1024%4 ps7 S _AXI ACP:AXIDMA SIMPLE
B B IN 1024%4 ps7_S_AXI ACP:AXIDMA_SIMPLE
C C ouT 1024%4 madd_1:A
Accelerator Callsites
Accelerator Callsite Pl;t Tra(l:)s;ieers)Size Cl;?jiegd“zzs Datal;]g;;‘ gf:;:,lsl)Time Transf:;;{eh:)le(CPIj
madd 1 main.cpp:128:11 | A 4096 paged
B 4096 contiguous 1112 5583
C 4096 contiguous 1112 5583
mmult_1 main.cpp:127:11 | A 4096 contiguous 1112 5583
B 4096 contiguous 1112 5583
C 4096 paged

Figure 16. Data motion network and accelerator callsites

There are two accelerated functions- madd and mmult. They are given instance names of
madd_1 and mmult_1. Each function has three arguments and hence three ports. Notice that the
C port of mmult_1 is directly connected to A port of madd_1 port, whereas the other two ports of
each hardware are connected in the system via AXIDMA_SIMPLE channels on ACP.

The transfer size is 4096 bytes or 1024 words on each ports of the two accelerators.

2-1-9. Start Vivado by selecting Start > All Programs > Xilinx Design Tools > SDx 2017.2 > Vivado
Design Suite > Vivado 2017.2

2-1-10. Click the Open Project link, open the design by browsing to
C:/xup/SDSoCl/labs/labl/Release/_sds/p0/_vpl/ipi/ipiprj and selecting ipiprj.xpr.

2-1-11. Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

Ea gl S
— .
! | coore |
]
Figure 17. The generated block design
As seen before, this platform supports four clocks. There are four reset blocks, one for each clock.
As only the 142.86 MHz clock in Zed or the 100 MHz clock in Zybo was used for the accelerators,
it connects only one reset block (second from top). The other blocks will be optimized away
during the synthesis.
Zynq 1-10 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Creating a System with SDx

We have targeted two functions for hardware acceleration, and hence two HLS created blocks
are generated and included in the design.

Since there are four data mover connections using ACP, there are four data movers (indicated by
blue color). The four data movers connect to the processor’'s ACP interface using the ACP
interconnect instance.

The mmult_1 output (Out C) has a direct connection path to madd_1 input (A), i.e. it does not go
through any data movers. You can see the path by zooming in and tracing the connections
(highlighted below).

1w — 3_AALLIE
mmut_1_T1 =4+ s_axis_szmm M_AXI_S2MM + —I
Il s axi s _axi_lite_ack s2mm_prmry_reset_out_n
 S_AXIS_FIFO_O ¢ m_axi_s2mm_ack szmm_introut
+ AP_FIFO_IARG_D ~—@ axi_resetn
E S_AXIS_FIFO_1) AXI Direct Memory Access
+ AP_FIFO_IARG_1
madd_1_if | |
+ AP_FIFO_OARG_0
—H = s_axi_ack ap_ctrl +||—| 4+ s_axi
Pt =0 s_axi_areseln M_AXIS_FIFO_0 + [+ S_AXIS_FIFO_O
H-—={ acc_ack ap_resetn O——— + AP_FIFO_IARG_O
- —0 acc_aresetn ap_ck =—rg + S_AXIS_FIFO_1
HH L s axis_fifo_0_adik + AP_FIFO_IARG_1
p1 g s_axis_fifo_0_aresetn —|||+ 2r_FiFo_oarc_o
H L s axis_fifo_1_adk s ack ap_ctri + "—I madd_1
b g s_ais_filo_1_aresetn et et} 5_axi_aresetn M_AXIS_FIFO_0 + |5 ———
o m s fifo_0_ack L ace ack ap_resetn D—‘ | I+ ap_cta [uau-n.il A |
b —d m_auis_fifo_0_amsetn bt g acc aresetn ap_ck i ap_dlk B +||
; 1l
adapter_v3_0 (Beta) IHIEe S’M!s’::‘)’:’adk ¢ | T ‘ ¢ +f”
T i ~Madd (Pro-Producton]
T f—t= e 5_axis_fifo_1_aresetn
1 m ais_filo_0_aclk
b1 g m_axis_filo_0_aresetn
adapter_v3_0 (Beta)

mmult_1

—" 4 ap ctd [wwesemris | A 4
ap_clk B +
o [P]cs

Mmult (Pre-Production)

Figure 18. Non data mover connection between mmult_1 and madd_1

2-1-12. Close Vivado by selecting File > Exit

2-2. Open the main.cpp, mmult.cpp, and madd.cpp files under Release > _sds>
swstubs and labl > src folders and understand the added code segments.

2-2-1. Expandlabl > src and double-click on main.cpp to see its content.

If line numbers are not visible then you can right-click in the left border of the file and select Show
Line Numbers.

Note that line 167 calls the mmult_test function call. The mmult_test function is defined between
lines 109 and 146, which in turn calls mmult at line 127 and madd at line 128. The mmult function
is defined in mmult.cpp (lines 53-78) and the madd function is defined in madd.cpp (lines 43-52).
Both these files are under the same src folder.

2-2-2. Expand Release > sds> swstubs and double-click on main.cpp to see its content.

Note that line 169 calls mmult_test function call as seen in the original source file. The mmult_test
function is now preceded by two function prototypes (lines 109 and 110) and the function is

v www.xilinx.com/university Zyng 1-11
i‘ XI LINX” Xup@xilinx.com

© copyright 2017 Xilinx

Creating a System with SDx Lab Workbook

defined between lines 111 and 148. On lines 129 and 130 it makes calls to _p0_mmult_1 and
_p0_madd_1 replacing the original calls.

189 Jvoid _pe_madd_1l_noasync(ftloat A|1024]|, float B|1lv24]|, float C|1024]);
110 |void _p@_mmult_1_ noasync(float A[1024], float B[1024], float C[1024]);
111= int mmult_test(float *A, Ffloat *B, float *C, float *D, float *D _sw)

112 {

113 std::cout << "Testing " << NUM_TESTS << " iterations of ™ << N << "x" << N
114 << " floating point mmultadd..." << std::endl;
115

116 pert_counter hw_ctr, sw _ctr;

117

118 for (int 1 = @; i < NUM _TESTS; i++)
119 {

120 init_arrays(A, B, C, D, D _sw);
121

122 float tmp[N*N], tmpl[N*N];

123 sw_ctr.start();

124 mmult golden(A, B, tmp);

125 madd_golden(tmp, C, D _sw);

126 sw_ctr.stop();

127

128 hw_ctr.start();

129 _p® mmult 1 noasync(A, B, tmpl);
130 _p® madd_1 noasync(tmpl, C, D);
131 hw_ctr.stop();

132

133 if (result _check(D, D _sw))

134 return 1;

135 }

Figure 19. Updated main.cpp file content

2-2-3. Double-click on the mmult.cpp under Release > _sds> swstubs to see its content.

The _pO_mmult_1 function is defined in lines 82 through 95, replacing the original functionality
with the data transfer using the cf_send command. Similarly, the madd function is updated in
madd.cpp (lines 54-73). It additionally uses cf _receive call to get the results.

The subsequent labs will discuss these function calls.

80 #include "cf _stub.h”

81 void _p®_mmult_1_noasync(float A[1024], float B[1024], float C[1024]);

82-void _p@_mmult_l1_noasync(float A[1024], float B[10824], float ([1024])

83 {

84 switch_to next partition(@);

85 int start_seq[1];

86 start_seq[@] = @;

87 cf_request handle t p@ swinst mmult 1 cmd;

38 cf_send i(&(_p@® swinst mmult_1.cmd mmult), start seq, 1 * sizeof(int), & p@ swinst mmult_1 cmd);
89 cf_wait(p@ swinst mmult_1 cmd);

o
[an]

cf_send_i(&(_p0® swinst_mmult_1.A), A, 4096, & p@ request_2);
cf_send_i(&(p® swinst mmult_1.B), B, 4096, & p@ request 3);

WoWD WD WD WD

[0, B S U Ny

}
Figure 20. The updated mmult.cpp file

Zyng 1-12 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx

Lab Workbook Creating a System with SDx

Test the Design in Hardware Step 3

3-1.

Copy the files located under Release\SD_Card folder into a SD card. Place
the card into the board. Configure the board to boot from SD. Connect and
power up the board. Establish serial communication. Execute the
application.

3-1-1. Using the Windows Explorer, copy all the files located under either lab1\Release\SD_Card folder
or labl_prebuilt\Release\SD_Card to the SD (Zed) or Micro-SD (Zybo) card.
3-1-2. Use SDK Terminal window on Zed or Terminal window on Zybo or third party terminal emulator
program like PuTTy, HyperTerminal, TeraTerm programs.
3-1-3. Select appropriate COM port (depending on your computer), and configure the terminal with the
115200 baud rate.
3-1-4. You should see the output in the console.
‘ Etarting tef—agent: OK
ootPzybo:"# 0
Figure 21. System bootup output
If you don't see the output then you can press PS-SRST push-button (Red) on the board.
3-1-5. In the Terminal window, either enter /mnt/lab1.elf or /mnt/labl_prebuilt.elf at the command
prompt and hit the Enter key.
The program will be executed and the result will be displayed showing the number of cycles
software execution takes vs the number of cycles taken using the hardware accelerators. It also
shows the number rows and columns of the matrices.
rootBplnx_arm:"# smnt-labl.elf
Testing 1824 iterations of 32x32 floating point mmultadd...
Average number of CPU cycles running mmultadd in software: 1848681
Average number of CPU cycles running mmultadd in hardware: 19241
Epeed up: 7.56296
TEST PRESED
rootBplnx_arm:="#
(a) Zed
ocotBzybo:"H# smnt-labl.elf
esting 1824 iterations of 32x32 inting point mmultadd...
verage numher of GCPU cycles running mmultadd in software: 384231
verage numher of CPU cycles running mmultadd in hardware: 19825
peed up: 15.345%8
EST PASSED
oot@zyho : "}
(8) Zybo
Figure 22. Program output
3-1-6. Close SDx by selecting File > Exit
3-1-7. Turn OFF the power to the board.
v www.xilinx.com/university Zyng 1-13
i‘ X”—INXJ Xup@xilinx.com

© copyright 2017 Xilinx

Creating a System with SDx Lab Workbook

Conclusion

In this lab, you created a project in the SDx Development Environment using one of the available project
templates. You then identified the functions which you wanted to put in the PL section of the Zynq chip to
improve the performance. Once the system was built, you analyzed the Data Motion network and the
created Vivado IPI project. Finally, you copied the relevant files on a SD card and verified the design in
hardware.

Zyng 1-14 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2017 Xilinx

