Lab Workbook Debugging Software Application

Debugging Software Application

Introduction

This lab guides you through the steps involved in debugging a software application in SDSoC. SDSoC
supports Standalone and Linux application debugging. SDSoC also provides the Dump/Restore Data File
feature which can be used to dump a memory snapshot on a disk and restore the memory content from a
pre-defined file. SDSoC also provides QEMU emulation capabilities which can be used for
hardware/software debugging. In this lab you will go through the QEMU emulation flow.

Objectives

After completing this lab, you will be able to:

e Use the SDSoC environment to debug Standalone applications
e Use the SDSoC environment to debug Linux application

e Use the SDSoC environment to perform QEMU emulation

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises three primary steps: You will create an SDSoC project, debug a Standalone
application and debug a Linux application.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Create an Debugging Debugging Performing
SDSoC |:> Standalone |:> Linux QEMU

& XILINX.

www.xilinx.com/university

Xup@xilinx.com

© copyright 2017 Xilinx

Zyng 5-1

Debugging Software Application Lab Workbook

Create an SDx Project Step 1

You can execute Step 1if you want to start from scratch otherwise skip to
Step 2.

1-1. Launch SDSoC and create a project, called lab5, using Standalone OS and
the Empty Application template targeting the Zed or Zybo board. Then add
the provided source files.

1-1-1. Open SDx, if not already open

The Workspace Launcher window will appear.
1-1-2. Click on the Browse button and browse to c:\xup\SDSoC\labs, if necessary, and click OK.
1-1-3. Select File > New > SDx Project to open the New Project GUI.
1-1-4. Enter lab5 as the project name.
1-1-5. Click Next to see Choose Hardware Platform window showing various available platforms.
1-1-6. Select either zybo or zed (depending on the board you are using) and click Next.
1-1-7. Select Standalone as the target OS, and click Next.
1-1-8. Select Empty Application and click Next.

1-1-9. Click Finish.

1-2. Import the provided source files from the source\lab5\src folder.

1-2-1. Right click on src under lab5 in the Project Explorer tab and select Import...

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse button, browse to the c:\xup\SDSoC\source\lab5\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

1-3. Mark sharpen_filter for the hardware acceleration. Setup for the Debug
configuration.

1-3-1. Add sharpen_filter function for acceleration.

1-3-2. Right-click on lab5 and select Build Configurations > Set Active > Debug

Zyng 5-2 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2017 Xilinx

Lab Workbook Debugging Software Application

1-3-3. Right-click on lab5 in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter —maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OK

1-3-4. Right-click on lab5 and select Build Project

The project will be built, generating the bit stream, and an SD card image. Since this will take
about 40 minutes, we will import the pre-built project.

Debugging Standalone Application Step 2

Skip Step 2-1if you are continuing from Step 1.

2-1. Import the pre-built lab5 project which has sharpen_filter marked for the
hardware acceleration. Uncheck the bitstream generation and SD card
image generation.

2-1-1. Select File > Import
2-1-2. Click on Existing Projects into Workspace under General and click Next.

2-1-3. Click on the Browse button of the Select archive file field, browse to c:\xup\SDSoC\source\lab5,
select lab5.zip and click Open.

Make sure that lab5 is checked in the Projects window.

2-1-4. Click Finish.

The project will be imported and lab5 folder will be created in the Project Explorer tab.

2-1-5. Expand the lab5 folder and double-click on the project.sdx entry.

The project file will be opened and the sharpen_filter function entry will be displayed in the HW
Functions window.

2-1-6. Uncheck the Generate Bit Stream and Generate SD Card Image options as they are already
generated.

2-2. Set the board to JTAG boot. Connect and power ON the board. Make
terminal connection. Start the debug session. Step through 5 statements.
Set a breakpoint on line 16 of the rgb_2_gray.c program.

2-2-1. Set the board to JTAG boot. Connect the board and power it ON.

2-2-2. Either use the SDx Terminal tab or use third party terminal emulator program like TeraTerm,
Putty, HyperTerminal. Make a connection to an appropriate COM port, setting 115200 baud rate.

2-2-3. Right-click on the lab5 project in the Project Explorer tab, and select Debug As > Launch on
Hardware (SDSoC Debugger)

v www.xilinx.com/university Zynq 5-3
i‘ XI LINXJ Xup@xilinx.com

© copyright 2017 Xilinx

Debugging Software Application Lab Workbook

The bitstream will be downloaded first to configure the board followed by the application

download.
2-2-4. Click Yes to switch to the debug perspective, if asked.
The debug perspective should show up. If it doesn’t then click on the Debug perspective
(%\ | <# SDx 4% Debug iy hytton.
Note that the program counter is at the main function entry point- line 75. In the Debug view you
will see the same information. The Variables tab shows various variables visible in the current
scope, the type, and their content.
2-2-5. Click on the Breakpoints tab and notice that two breakpoints are defined as default: (i) main and
(i) _exit
+ Debug L o I:If_&fu_'dkw:nli) o=
1 & System Debugger using Debug_lab5.elf on Local (Local) V|4 [function: _exit]
- @ APY |4 [function: main]
a @@ ARM Cortex-A9 MPCore #0 (Breakpoint: main)
= (x0010153¢ main(): SDSoC_lab_design_maing, line 75
= x00101b% _start()
& ;R“ Corex-A9 MPCore #1 (Suspended)
& %72020
g SD50C_lab_de... g5 Outline &
i #endif - U stdioh
0~ int main(int arge, char* argv[]) { o staliph
S al variables U sds_libh
int 1; U lab_designh
set up memory structures for moving fremes of data U rgb 2 grayh
uint32 t "array_c = {uint32_t") s.ds_alilur_(FRMF HEIGHT * FRAME_WIDTH * sizeof(uint3Z t})); (s U sharpenh
uint8_t *array_g_1 = (uint8_t*) sds_alloc(FRAME_HEIGHT * FRAME_WIDTH * sizeof({uintf_t}); U edge_detecth
uintd_t *array g 2 = (uint8_t*) sds_alloc(FRAME_HEIGHT * FRAME_WIDTH * sizeof(uint8_t})); ® ow_sds_counter_total
wint8_t *array_g_3 = (uint8_t*) sds_alloc({FRAME_HEIGHT * FRAME_WIDTH * sizeof(uint8_t)}); * sw_sds_counter_num_calls
. ® sw_sds_counter
prir;tlf("";t;;nn.ilr;.r; ;:-*ame'\peranlnnf. # sw_sds_clk_start()
' # sw_sds_clk_stop()
initialize the color & sw_avg_cpu_cycles()
dusmyfill(array_c); # RGB2GRAY
SHARPEN
* process image * # EDGE_DETECT
sw_sds_clk_start(WHOLE_PROCESS); # WHOLF PROCESS
Figure 1. Debug perspective
2-2-6. Click on the Step Over button about five times (= "® ST LE or press F6) to
execute the printf statement (line 81).
When the statement is executed, you will see a message is being printed in the Terminal tab.
2-2-7. Click on the SDx button on the top-right (2| | ## Debug) to change to the SDx C/C++
perspective.
The Project Explorer will show up.
2-2-8. Expand lab5 > src and double-click on the rgb_2_gray.c entry to open the file.
2-2-9. Double-click in the left border of the line (line 19(Zed) or 16(Zybo)) to set the breakpoint.
Zyng 5-4 www.xilinx.com/university

& XILINX.

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Debugging Software Application

16 #ifndef SUPPRESS_RGB_2_GRAY_OPTIMIZATION
17 #pragma AP PIPELINE IT =1
18 #endif

wl9 index = (i * FRAME_WIDTH + j);

Figure 2. Set a breakpoint
2-2-10. Switch back to the Debug perspective by clicking on the Debug button.

2-2-11. Click on the Breakpoints tab and notice that another entry is added.

2-3. Continue with the execution. Inspect index variable. Observe memory
content of gr variable changing.

2-3-1. Click on the Resume button (“\ H2RP) which will start executing until
one of the breakpoints is encountered.

Note that the program stops at line 19(Zed) or 16(Zybo) of rgb_2_gray.

2-3-2. Click on the Variables tab and note the content of various variables. Select index and note the
value (30) and its address 0x1016a044.

0= Variables 2| ® Breakpoints tiii Registers B XSCT Console B Emulation Console = Modules

Mame Type Value
- ® color uint32_t* @x08200000
- ® gray uint8_t * "\226%357%323
- | int @
6= int @
6= index int
9= red uint32_t gx002006800
)= green uint32_t @x8e01163ec
¢9= blue uint32_t gx0peeeese
= thisPixel uint32_t gx000008a3
¢d= gr uintl6_t Bx000e
38

Hex: 60000081, Dec: 30, Oct: 836

Bin: 6000, 0000, 0000, 0000, 0000, 0000 ,0081,1116
Size: 4 bytes, Type: int

|Address: 8x1016a844 |

Figure 3. Variables content

2-3-3. Click on the Step Over button five times so that line 23 is highlighted. Note the variables content.

The blue variable is highlighted as that was the last variable whose content changed while
executing line 26 statement.

Note the next statement which will be executed will compute the variable gr.

2-3-4. Select gr and note the value (0) and the address 0x1016a032.

v Xilinx.com/universit Zynq 5-5
£ XILINX e /
© copyright 2017 Xilinx

Debugging Software Application

Lab Workbook

2-3-5. You can see its content in the Memory tab also. Select the Memory tab and click on “+” to open
up the Monitor Memory dialog box. Enter 0x1016a032 in the address bar and click OK.

== Monitor Memory lﬁ

Enter address or expression to monitor:

Ox1016a032 A

'f?:' OK l [Cancel

b

Figure 4. Monitor Memory window

The memory content will be displayed. The upper 16-bits represent the value.

2-3-6. Click on the Step Over button one more time and notice that the new value was computed and
the memory content change is reflected. The variable tab’s content also changed.

SDx Log & Emulation Console O Memory 2 4 Target Connections

8l ¢ e B EE

Monitors % % % (0x1016a032 : 0x1016A032 <Hex Integer> 2 .4 New Renderings..
@ 0x10162032 Address @ - 3 a -7 8 - B C-F
1016a030 BELEEEIPN 0000001 00000014 0OOOOOOA
1016A040 00PA141E 0OOOO000 0000ERO EOOOOOOO
1016A050 ©00000OIE 1016A08C 0000000 OOHOOOO
1016A060 FSFOGEE0 0007678 FFFFFFFF 01400000
1016A070 01000000 0OCOPO00 00200000 OOOOOOS
1016A080 00000003 0OOAPOIE 000000 0O101E24

Figure 5. Variable gr's updated value in the Memory tab

2-3-7. Move the mouse close to gray array in line 28(Zed) or 25(Zybo) and notice that it is a pointer to
an array of type unit8_t. The pointer is stored at 0x1016a028. The pointer value of which is

0x00C00000.

Zyng 5-6 www.xilinx.com/university
Xup@xilinx.com
© copyright 2017 Xilinx

& XILINX.

Lab Workbook Debugging Software Application

- color uint3z2_t#* BxB0200000
4 % gray uint8_t * "\226\357\323\372W\355\377\332G"325.
)= * uint8_t "\226°
69= | int 8
0= j int @
)= index int 9
= red uint32_t Bx00068800a
&= green uint32_t 0x00000014
= blue uint32_t 8x0000001e
9= thisPixel uint32_t Bx00Baldle

4 {1} 3

"\22613571323\372W\355\377\332G\325\3623330\177h\372}\,338 | \382~\3171376\ 260\ 2154337276\ 37771323\, 325\,3312 [7\ 357,355
Hex: e0co0000, Dec: 12582912, Oct: 060000000, At: _heap + Oxad5f70

Bin: eeee,0000,110a,0000, 0008, 0600, 0000, 6008

Size: 4 bytes, Type: uint8_t *

Address: 8x1016a028

Figure 6. Array gray

2-3-8. Scroll up the Memory tab 1 line to view the contents of location 0x1016e598 and notice that it is
pointing to 0x00c00000.
SDx Log & Emulation Console 0 Memory 2 4 Target Connections
o Cc B8 EE
Monitors % % % [0x1016a032 : 0x1016A032 <Hex Integer> 2 “._dk New Renderings..

@ (x1016a032 Address @ - 3 4 -7 8 -8B C-F
19169FF8 00000000 Pa167ACH PBBOeBRe PrBeeRe1
1916A000 ©000EEO2 09118574 00118220 OBBOFFFF
191640160 FBFOGO0O PrBeY767B FFFFFFEF PBBOeBRe
19164028 1016A08C PR1022F8 erCoenRe 09200000
10164030 & slankislap) Q0080a1E PUBeee14d GOOPBOBA

Figure 7. Pointer’s content
2-4. Add 0x00CO00000 (array_g_1 address) in the Memory tab, click the Resume
button four times and observe the changing content. Remove the
breakpoint set at line 19 and click the Step Return button to complete the
function execution return to the main program.
2-4-1. Add 0x00C00000 in the Memory tab to view its content.
2-4-2. Click on Resume button four times and observe the array content changing.
0x00c00000 : 0xCO0000 <Hex Integer> ¥ == New Renderings...
Address @ - 3 4 -7 8 -8B C-F -
PRCEOEEE & EEEEEREE DAFFEDS7 DBF2D547 FAGE7FAF
paCend1e C27CDE7D BOFECFVE FFBEDFBD DSD5D337
PBCend28 EF375B3F D&CDBEED EDBF55FF JF695EB1 E-
PACenB3e B2CEBFFD FC7BB757 BFCES5177 EEAVBFFE
PBCeVd48 BEFEFSBF 9FBFEFF& FFECEDFD AFFD7E77
PBCeVB58 ABFF7FDS 6FDBFB77Y C/FFDEDY 2FEBVBFS -
Figure 8. Array content changing
v www.xilinx.com/university Zynq 5-7
i‘ XILINX*’ Xup@xilinx.com

© copyright 2017 Xilinx

Debugging Software Application Lab Workbook

2-4-3.

2-4-4,

2-4-5.

2-5-1.

2-5-2.

2-5-3.

2-5-4,

2-5-5.

2-5-6.

2-5-7.

2-5-8.

Select the Breakpoints tab and uncheck the rgb_2 gray.c — line 19 check box. This will disable
the breakpoint.

Click on the Step Return button (™® M 2 CEP) to execute the function and
stop on line 100 of the SDSoC_lab_design_main.c program (_p@_sharpen_filter_1_noasync).

Select the Variables tab and select array_g_1. Note its content and the address.

= Variables ¥ % Breakpoints i Registers B XSCT Console B Emulation Console =i Modules =
B & et~
MName Type Value
9= argc int 8
» argv char ** fxBeoBBEea
6= | int 5
» array_c uint32_t* 0xB0200000
» » array g_1 uint8_t * "\821,8214621462146214621\8214821\8. ..
% array_g_2 uint8_t * "\e243"
» aray_g_3 uintd_t * "\@247"

"\B21\821\821\821\0211\821\821821\821,821\821\821\821\821021\0211821\821821\021\021\821\0821\021\021\821\821\821\82 ~
Hex: 8@ceaeee, Dec: 12582912, Oct: 060000000, At: _heap + Oxad>f70

Bin: 2000, 00080,1106, 0000, 0000, 0000, 0000, 0000

Size: 4 bytes, Type: uint8_t *

Address: 8x1816a874

Figure 9. The processed content of array_g_1

Use Dump/Restore Data File feature of SDK to update the array_g 1's
content with the provided binary data file stored in the source/lab5
directory.

After the color buffer has been converted to gray, you will replace the
content of array_g_1 with the binary data provided to you in the
lab5 _array g 2.bin file.

Select Xilinx > Dump/Restore Data File

Click the Select button, choose Name=Xilinx Hardware Server from the Peers section.
Expand the APU entry in the Contexts section and select ARM Cortex-A9 MPCore #0.
Click OK.

Click the Browse button, browse to C:\xup\SDSoC\source\lab5\, choose lab5 array g_1.bin
and click Save.

Select the Restore Memory option as we want to read the file contents into the memory.

Enter 0Ox0O0C00000 in the Start Address field and 2073600 in the Size field.

Where 2073600 is the number of pixels (1920 x 1080).

Click OK.

Zyng 5-8 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook

Debugging Software Application

-

“1) Dump/Restore Memory

|

Dump/Restore Memory P
Dumps Memory Contents to File or Restores File Contents to Memory 0
Processor. /APU/ARM Cortex-A9 MPCore #0 | select. |
Connection: | TCP:127.0.0.1:3121
File Location: Chxup\SDSoC\sourcet\lab5\lab5_array_g_l.bin l Browse... I
(C) Dump Memory (@) Restore Memory
Memaory Details
Start Address: 0x00C00000
Size(in bytes): 2073600
':?:' OK] l Cancel
|]

Figure 10. Updating memory content with a pre-created binary content

This will load the content into the array (you can see the progress in the SDK log window). You

can see the updated content in the Memory tab.

Note that the next statement which will be executed will be using the hardware accelerator (line

100).

2-5-9. Click the Step Over button.

The array_g_2 content will be updated due to the execution of the statement.

2-5-10. Click the Disconnect (¥¥) button to terminate the session.

Debugging Linux Application

Step 3

For this portion of the lab, you will need an Ethernet port on the PC
configured to 192.168.0.1 as an IP address and an Ethernet cable

connected between the PC and the board.

You can execute Step 3-1 and Step 3-2 if you want to start from scratch

otherwise skip to Step 3-3.

3-1. Create a new empty application project called lab5a targeting Linux OS.
Import the provided source files from source\lab5\src folder

3-1-1. Select File > New > Xilinx SDx Project to open the New Project GUI.

3-1-2. Enter lab5a as the project name, select either zybo or zed (depending on the board you are

using), select Linux as the target OS, select Empty Application and click Finish.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2017 Xilinx

Zyng 5-9

Debugging Software Application Lab Workbook

3-1-3. Right click on src under lab5a in the Project Explorer tab and select Import...
3-1-4. Click on File System under General category and then click Next.
3-1-5. Click on the Browse button, browse to c:\xup\SDSoC\source\lab5\src folder, and click OK.

3-1-6. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

3-2. Mark sharpen_filter for the hardware acceleration. Build the Debug project.
3-2-1. Add the sharpen_filter in HW Function pane.
3-2-2. Right-click on lab5a and select Build Configurations > Set Active > Debug

3-2-3. Right-click on lab5 in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter —maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OK

3-2-4. Right-click on lab5a and select Build Project
The project will be build, generating bit stream, and the SD card image.
Since this will take about 35 minutes, we will import the pre-build project.

If you are continuing from Step 3-2, then skip Step 3-3.

3-3. Import the pre-built lab5a project which has sharpen_filter marked for the
hardware acceleration. Uncheck the bitstream generation option.

3-3-1. Select File > Import
3-3-2. Click on Existing Projects into Workspace under General and click Next.

3-3-3. Click on the Browse button of the Select archive file field, browse to c:\xup\SDSoC\source\lab5,
select lab5a.zip and click Open.

Make sure that lab5a is checked in the Projects window.

3-3-4. Click Finish.

The project will be imported and lab5a folder will be created in the Project Explorer tab.

3-3-5. Expand the lab5a folder and double-click on the project.sdx entry.

The project file will be opened and the sharpen_filter function entry will be displayed in the HW
Functions window.

3-3-6. Uncheck the Generate Bit Stream option making sure that the Generate SD Card Image option is
still checked.

Zyng 5-10 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2017 Xilinx

Lab Workbook Debugging Software Application

3-4. Copy the sd_card content on the SD Card. Configure the board to boot
from the SD card. Connect and power up the board. Setup the ip addresses
both on the board and the PC Ethernet adaptor.

3-4-1. Using the Windows Explorer copy the content of the lab5a > Debug > sd_card onto the SD card.
Place the SD card into the board.

3-4-2. Configure the board to boot from the SD card.

3-4-3. Connect the board, including network cable, and power it ON.

The board will boot.

3-4-4. Make the serial connection using the appropriate COM port.

3-4-5. Press the PS-SRST button on the board to reboot and notice Linux booting.

3-4-6. Once the board boot is complete, set the ip address of the board to 192.168.0.10 typing the
following command at the Linux prompt:
ifconfig and note if any address is being assigned. If not assigned then execute the following
command to assign to the correct Ethernet adaptor.
ch-s. 30
eth@) Link encap:Ethernet HWaddr @0:8A:35:00:01:22

UP BROADCAST RUNNING MULTICAST MTU:1508 Metric:1
ackets:501 errors:® dropped:® overruns:@ frame:@
No IP address Bckets:23 errors:0 dropped:@ overruns:® carrier:@
sions:® txgqueuelen:1000
RX bytes:53968 (52.7 KiB) TX bytes:7866 (7.6 KiB)
Interrupt:143 Base address:8xbeoe
lo Link encap:local Loopback
inet addr:127.9.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:® errors:® dropped:® overruns:@ frame:@
TX packets:® errors:® dropped:® overruns:@ carrier:@
collisions:® txgueuelen:@
RX bytes:8 (0.8 B) TX bytes:8 (0.0 B)
sh-4.3# ifconfie(ethe) 192,168.0.10|
Figure 11. Assigning an IP address

3-4-7. Using the control panel on the PC, configure the PC Ethernet adaptor with the static IP address to
192.168.0.1.

You can verify the connectivity by using ping 192.168.0.1 command from the board’s prompt.

3-5. Make target connection and start debugging the application.

3-5-1. Inthe Target Connections tab, expand Linux TCF Agent and double-click on Linux Agent
[default]

3 www.xilinx.com/universit Zynq 5-11

& XILINX. / ynd

Xup@xilinx.com
© copyright 2017 Xilinx

Debugging Software Application Lab Workbook

4 Target Connections &
+ = Hardware Server
4 [= Linux TCF Agent
4 Linux Agent [default]
» = QEMU TcfGdbClient

Figure 12. Accessing Linux Agent

Alternately, in the Actions panel, for the connection, click on the New button.

3-5-2. Enter 192.168.0.10 in the Host field and then click OK making sure that the Port field is set to
1534.
f EIE Target Connection Details ﬁ1
Edit Target Connection
Edit Target Connection
Target Mame LinuxAgent
| [v]Set as default target
l| Specify the connection type and properties
Type | Linux TCF Agent A
Host 192.168.0.10
Port 1534
.f?j oK l | Cancel
Figure 13. Making connection for Linux target
3-5-3. Right-click on lab5a project in the Project Explorer and select Debug As > Launch on Hardware
(SDSoC Debugger).
The connection will be made.
The debug perspective should show up. If it doesn’t then click on the Debug perspective button.
Note that the program counter is at the main function - line 75. The Variables tab shows various
variables visible in the current scope, the type, and their content.
3-5-4. Click on the Step Over button five times to execute the printf statement. When executed, you will
see the message in the Console tab.
The variables tab will show various variables and arrays. Note that the value may be same as in
the Standalone application but the addresses where they are defined will be different as the
application is running under Linux.
3-5-5. Click on the SDx button on the top-right to change to the SDx C/C++ perspective.
The Project Explorer will show up.
3-5-6. Expand lab5a > src and double-click on the rgb_2_gray.c entry to open the file.
Zyng 5-12 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Debugging Software Application

3-5-7. Double-click in the left border of the line (line 19(Zed) or 16(Zybo)) to set the breakpoint.

3-5-8. Switch back to the Debug perspective by clicking on the Debug button.

3-5-9. Click on the Resume button which will start executing until one of the breakpoints is encountered.
3-5-10. Note that the program stops at line 19(Zed) or 16(Zybo) of rgb_2_gray.

3-5-11. Click Step Over button to execute the statement.

3-5-12. Select index and note the value (0) and its address @xbe972c74. Note the address may be
different as MMU is used to translate virtual address into a physical address.

3-5-13. Click on the Step Over button four times such that line 26(Zed) or 23(Zybo) is highlighted. Note
the variables content.

Note the next statement which will be executed will compute the variable gr.
3-5-14. Click Step Over button to execute the statement.

3-5-15. Select gr and note the value (0x0011) and the address exbe972c62. Note the address may be
different as MMU is used to translate virtual address into a physical address.

3-5-16. You can see its content in the Memory tab also. Select the Memory tab and click on “+” to open
up the Monitor Memory dialog box. Enter the address and click OK.

The memory content will be displayed. The upper 16-bits represent the value.

Since MMU is used in Linux, you won't be able to see the content of the arrays and you won't be
able to use the Dump/Restore Data File feature of SDx.

3-5-17. Remove the breakpoint and click Resume to execute the program to the completion.

This may take about 30 seconds.
3-5-18. Click on the Terminate button followed by click on the Disconnect button.

3-5-19. Turn OFF the board.

Performing QEMU Emulation Step 2

4-1. Create a project, called lab5_gemu, using Standalone OS and the Matrix
Multiplication and Addition template targeting the Zed or Zybo board.

4-1-1. Select File > New > SDx Project to open the New Project GUI.

4-1-2. Enter lab5 _gemu as the project name.

v www.xilinx.com/university Zyng 5-13
i‘ XI LINXJ Xup@xilinx.com

© copyright 2017 Xilinx

Debugging Software Application Lab Workbook

4-1-3. Click Next to see Choose Hardware Platform window showing various available platforms.

4-1-4. Select either zybo or zed (depending on the board you are using) and click Next.

4-1-5. Select Standalone as the target OS, and click Next.

4-1-6. Select Matrix Multiplication and Addition (area reduced) in case of zybo or Matrix
Multiplication and Addition in case of zed as the source.

4-1-7. Click Finish.

4-2. Uncheck the Generate Bitstream and Generate SD Card image options.
Check Generate emulation model option. Setup for the Debug configuration.

4-2-1. Notice that the mmult and madd functions are already targeted for hardware.

4-2-2. Uncheck the Generate Bitstream and Generate SD Card image options.

4-2-3. Check the Generate emulation model option.

4-2-4. Right-click on lab5 and select Build Configurations > Set Active > Debug

4-2-5. Right-click on lab5_gemu in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter —maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OK

4-2-6. Change NUM_TESTS value from 1024 to 1 in main.cpp file under the lab5_gemu > src folder.
This is to cut down the simulation time. Typically, this is how one would debug by reducing
number of iterations and duration of execution to detect errors.

4-2-7. Right-click on lab5_gemu and select Build Project
The project will be built, generating the bit stream, and an SD card image. This will take about 15
minutes.
Skip to 4-4 if you are continuing from Step 4-2 above.

4-3. Import the pre-built lab5_gemu project which has mmult and madd
functions marked for the hardware acceleration.

4-3-1. Select File > Import

4-3-2. Click on Existing Projects into Workspace under General and click Next.

4-3-3. Click on the Browse button of the Select archive file field, browse to c:\xup\SDSoC\source\lab5,
select lab5_gemu.zip and click Open.
Make sure that lab5_gemu is checked in the Projects window.

Zyng 5-14 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Debugging Software Application

4-3-4. Click Finish.
The project will be imported and lab5_gemu folder will be created in the Project Explorer tab.
4-3-5. Expand the lab5_gemu folder and double-click on the project.sdx entry.
The project file will be opened and the mmult and madd functions entries will be displayed in the
HW Functions window.
4-3-6. Notice that the Generate emulation model option is checked.
4-4. Launch the QEMU emulation.
4-4-1. Right-click the project name and select Debug As > Launch on Emulator (SDSoC Debugger)
4-4-2. Click Yes in the Emulation dialog box to start the emulator.
4-4-3. Ensure that the Show Waveform (Programmable Logic Only) option is enabled.
4-4-4. Click Start to start the emulator in the Emulation dialog box.
4-4-5. Click Yes in the Confirm Perspective Switch dialog box.
This will launch the Vivado simulator and simultaneously the program stops at the first executable
code of the main() function in SDx IDE.
#5 Debug [i# ¥ = O (9-Variables % Breakpoints i Registers @Ml XSCT Console @ Emulation Console &
4 % Emulation using Debug_lab5_gemu.elf on QEMU (QEMU) QEMU Brocess : : : :
4 GdbClient (localhost1137) WARNING: This machine d?es not have required Windows Hotfix gor
— https://support.microsoft.com/en-us/help/2732840/tasklist.
4 g% pl Starting QEMU
4 g* CPU#0 fcpu@0 (Breakpoint: main) — Press <Ctrl-a h> for help
= (0x001012c4 main(): main.cpp, line 149 Waiting for QEMU to start.QEMU waiting for connection on: discon
= 0x0010d424 _start() . QEMU started!
= Starting PL simulation
gemu?
}
int main(int argc, char* argv[]){
int test_passed = @;
short *A, *B, *C, *D, *D_sw;
A = (short *)sds_alloc(N * N * sizeof(short)};
B = (short *)sds_alloc(N * N * sizeof(short));
C = (short *)sds_alloc(N * N * sizeof(short));
D = (short *)sds alloc(N * N * sizeof(short));
D_sw = (short *)malloc(N * N * sizeof(short));
Figure 14. Debug perspective in SDx
3 www.xilinx.com/universit Zynq 5-15
& XILINX. / ynd

Xup@xilinx.com
© copyright 2017 Xilinx

Debugging Software Application Lab Workbook

Scope X Sources — LCIER Objects U i] e <
Q| = = o Q o
Mame Design Unit Block Type Mame Yalue DataT..”
~ 4 zybo_wrapper Zybo_wrapp... Verilog M. > @@ DDR_addr.. ZZZZ Array
> @ zybo i zybo Verilog M. * @@ DDR_ba[2:0] Z Array
@ qlbl glbl Yerilog M... wa DDR_cas_n Z Logic
@DDR_ckn Z Logic
@DDR_ckp Z Logic
i DDR_cke Z Logic
@& DDR_cs.n Z Logic
» @@ DDR_dm[3.. Z Array
> @b DDR_dq[3.. ZZ777777 Aray
*» f@DDR_dgs_.. Z Array
> iDDR_dgs_. Z Array
i= DDR_odt z Logic
S NNR ras n 7 I nnir
< LIV

Figure 15. Vivado simulator view

4-4-6. Set the breakpoint at the code std: :cout << "TEST " << (test_passed ? "FAILED" :
"PASSED™) << std::endl; (near line 167).

4-4-7. Select File > Open Waveform Configuration in the Vivado simulator.

4-4-8. Browse to C:\xup\SDSoC\source\lab5 and select zybo_wrapper_behav.wcfg
4-4-9. Click OK.

4-5. Run the application and simulation.

4-5-1. Click Resume (up) in the SDx IDE to run the application

4-5-2. Set the simulation time to 100 us in the Vivado simulator

4-5-3. Click the Run for icon.

Wait for few minutes. Observe simulation progress.

4-5-4. When RTL simulation is done, switch to SDSoC window and click Pause button followed by
clicking Disconnect button.

LY
4-5-5. Click the Zoom Fit (¢ w) icon in the waveform toolbar to view the full simulation waveform.

4-5-6. Zoom in using the Q icon to analyze the required signals.

Zyng 5-16 www.xilinx.com/university v
Xup@xilinx.com (A XI I—INXm

© copyright 2017 Xilinx

Lab Workbook Debugging Software Application

(b) Zybo

Figure 16. Vivado simulator output

4-5-7. Close the Vivado simulator and SDx IDE

Conclusion

In this lab, you debugged Standalone and Linux applications using SDx software debugger, and learned
to how to perform QEMU emulation to perform hardware/software debugging. The Standalone application
was debugged using JTAG connection whereas the Linux application was debugged over Ethernet. In
Standalone application you were able to look into various arrays using the addresses and able to use the
Dump/Restore Data File feature of SDSoC. In Linux application this was not possible as MMU translates
the virtual addresses of arrays and pointers into physical addresses. The QEMU emulation debugging
provides visibility to accelerator’s internal activities which can be used for hardware/software debugging.

v www.xilinx.com/university Zyng 5-17
i‘ XI LINXJ Xup@xilinx.com

© copyright 2017 Xilinx

