
Issue 2 © Copyright 2019 Xilinx, Inc i

Cloud Onload® HAProxy Cookbook

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered
as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer
to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
A list of patents associated with this product is at http://www.solarflare.com/patent
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”).
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK
OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
Copyright
© Copyright 2019 Xilinx, Inc. Xilinx, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.
SF-122383-CD
Issue 2

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
http://www.solarflare.com/patent

Cloud Onload HAProxy Cookbook
 Table of Contents

1 Introduction. 1
1.1 About this document .1
1.2 Intended audience. .2
1.3 Registration and support .2
1.4 Download access .2
1.5 Further reading .2

2 Overview . 3
2.1 HAProxy overview .3
2.2 NGINX overview. .3
2.3 Wrk2 overview. .4
2.4 Cloud Onload overview. .4

3 Summary of benchmarking . 6
3.1 Overview of HAProxy benchmarking .6
3.2 Architecture for HAProxy benchmarking. .7
3.3 HAProxy benchmarking process. .8

4 Evaluation . 10
4.1 General server setup. .10
4.2 wrk2 client (on Load server) .11
4.3 NGINX backend webservers (on Load server) .12

Static files for webservers. .13
4.4 HAProxy (on Proxy server) .13
4.5 Graphing the benchmarking results. .15

5 Benchmark results. 16
5.1 Results .17

Connections per second .17
Requests per second .18
Throughput .19
Latency .20

5.2 Analysis. .21
Connections per second .21
Requests per second .21
Throughput .21
Latency .21
Issue 2 © Copyright 2019 Xilinx, Inc ii

Cloud Onload HAProxy Cookbook

Table of Contents
A Cloud Onload profiles . 22
A.1 The wrk-profile Cloud Onload profile .22
A.2 The nginx-server Cloud Onload profile .23
A.3 The haproxy Cloud Onload profiles .24

The haproxy-balanced profile. .24
The haproxy-performance profile .24
The haproxy-config profile fragment .25
The reverse-proxy-throughput profile fragment.27

B Installation and configuration . 30
B.1 Installing HAProxy .30

Installation .30
B.2 Installing NGINX. .31

Installation .31
B.3 Installing wrk2 .32

Installation .32
B.4 Installing Cloud Onload. .33
Issue 2 © Copyright 2019 Xilinx, Inc iii

Cloud Onload HAProxy Cookbook
 1 Introduction

This chapter introduces you to this document. See:

• About this document on page 1

• Intended audience on page 2

• Registration and support on page 2

• Download access on page 2

• Further reading on page 2.

1.1 About this document
This document is the HAProxy Cookbook for Cloud Onload. It gives procedures for
technical staff to configure and run tests, to benchmark HAProxy utilizing
Solarflare's Cloud Onload and Solarflare NICs.

This document contains the following chapters:

• Introduction on page 1 (this chapter) introduces you to this document.

• Overview on page 3 gives an overviews of the software distributions used for
this benchmarking.

• Summary of benchmarking on page 6 summarizes how the performance of
HAProxy has been benchmarked, both with and without Cloud Onload, to
determine what benefits might be seen.

• Evaluation on page 10 describes how the performance of the test system is
evaluated.

• Benchmark results on page 16 presents the benchmark results that are
achieved.

and the following appendixes:

• Cloud Onload profiles on page 22 contains the Cloud Onload profiles used for
this benchmarking.

• Installation and configuration on page 30 describes how to install and configure
the software distributions used for this benchmarking.
Issue 2 © Copyright 2019 Xilinx, Inc 1

Cloud Onload HAProxy Cookbook

Introduction
1.2 Intended audience
The intended audience for this HAProxy Cookbook are:

• software installation and configuration engineers responsible for
commissioning and evaluating this system

• system administrators responsible for subsequently deploying this system for
production use.

1.3 Registration and support
Support is available from support@solarflare.com.

1.4 Download access
Cloud Onload can be downloaded from: https://support.solarflare.com/.

Solarflare drivers, utilities packages, application software packages and user
documentation can be downloaded from: https://support.solarflare.com/.

The scripts and Cloud Onload profiles used for this benchmarking are available on
request from support@solarflare.com.

Please contact your Solarflare sales channel to obtain download site access.

1.5 Further reading
For advice on tuning the performance of Solarflare network adapters, see the
following:

• Solarflare Server Adapter User Guide (SF-103837-CD).
This is available from: https://support.solarflare.com/.

For more information about Cloud Onload, see the following:

• Onload User Guide (SF-104474-CD).
This is available from: https://support.solarflare.com/.
Issue 2 © Copyright 2019 Xilinx, Inc 2

mailto:support@solarflare.com?subject=HAProxy%20with%20Cloud%20Onload:%20support%20request
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/
mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20HAProxy%20benchmarking
https://support.solarflare.com/

Cloud Onload HAProxy Cookbook
 2 Overview

This chapter gives an overview of the software distributions used for this
benchmarking. See:

• HAProxy overview on page 3

• NGINX overview on page 3

• Wrk2 overview on page 4

• Cloud Onload overview on page 4.

2.1 HAProxy overview
HAProxy is a free, very fast and reliable solution offering high availability, load
balancing, and proxying for TCP and HTTP-based applications. It is particularly suited
for very high traffic web sites and powers quite a number of the world's most visited
ones. It is now shipped with most mainstream Linux distributions, and is often
deployed in cloud platforms.

Its mode of operation makes its integration into existing architectures very easy and
riskless, while still offering the possibility not to expose fragile web servers to the
net.

HAProxy is heavily network dependent by design, so its performance can be
significantly improved through enhancements to the underlying networking layer.

2.2 NGINX overview
Open source NGINX [engine x] is an HTTP and reverse proxy server, a mail proxy
server, and a generic TCP/UDP proxy server.

NGINX Plus is a software load balancer, web server, and content cache built on top
of open source NGINX. NGINX has exclusive enterprise-grade features beyond
what's available in the open source offering, including session persistence,
configuration via API, and active health checks.

Open source NGINX is used for this benchmarking.
Issue 2 © Copyright 2019 Xilinx, Inc 3

Cloud Onload HAProxy Cookbook

Overview
2.3 Wrk2 overview
Wrk is a modern HTTP benchmarking tool capable of generating significant load
when run on a single multi-core CPU. It combines a multithreaded design with
scalable event notification systems such as epoll and kqueue. An optional LuaJIT
script can perform HTTP request generation, response processing, and custom
reporting.

Wrk2 is wrk modified to produce a constant throughput load, and accurate latency
details to the high 9s (it can produce an accurate 99.9999 percentile when run long
enough). In addition to wrk's arguments, wrk2 takes a required throughput
argument (in total requests per second) via either the --rate or -R parameters.

Figure 1: Wrk/wrk2 architecture

2.4 Cloud Onload overview
Cloud Onload is a high performance network stack from Solarflare
(https://www.solarflare.com/) that dramatically reduces latency, improves CPU
utilization, eliminates jitter, and increases both message rates and bandwidth. Cloud
Onload runs on Linux and supports the TCP network protocol with a POSIX
compliant sockets API and requires no application modifications to use. Cloud
Onload achieves performance improvements in part by performing network
processing at user-level, bypassing the OS kernel entirely on the data path.

Cloud Onload is a shared library implementation of TCP, which is dynamically linked
into the address space of the application. Using Solarflare network adapters, Cloud
Onload is granted direct (but safe) access to the network. The result is that the
application can transmit and receive data directly to and from the network, without
any involvement of the operating system. This technique is known as “kernel
bypass”.
Issue 2 © Copyright 2019 Xilinx, Inc 4

https://www.solarflare.com/

Cloud Onload HAProxy Cookbook

Overview
When an application is accelerated using Cloud Onload it sends or receives data
without access to the operating system, and it can directly access a partition on the
network adapter.

Figure 2: Cloud Onload architecture
Issue 2 © Copyright 2019 Xilinx, Inc 5

Cloud Onload HAProxy Cookbook
 3 Summary of benchmarking

This chapter summarizes how the performance of HAProxy has been benchmarked,
both with and without Cloud Onload, to determine what benefits might be seen.
See:

• Overview of HAProxy benchmarking on page 6

• Architecture for HAProxy benchmarking on page 7

• HAProxy benchmarking process on page 8.

3.1 Overview of HAProxy benchmarking
The HAProxy benchmarking uses two servers:

• The load server runs multiple instances of wrk2 to generate requests, and
multiple instances of NGINX webservers to service requests.

• The proxy server runs multiple instances of HAProxy. It receives the requests
that originate from wrk2 on the load server, and proxies those requests to an
NGINX webserver on the load server.

Various benchmark tests are run, with HAProxy using the Linux kernel network
stack.

The tests are then repeated, using Cloud Onload to accelerate HAProxy. Two
different Cloud Onload profiles are used, that have different priorities:

• The balanced profile gives excellent throughput, with low latency. It has
reduced CPU usage at lower traffic rates.

• The performance profile is latency focused. It constantly polls for network
events to achieve the lowest latency possible, and so has higher CPU usage.

The results using the kernel network stack are compared with the results using the
two different Cloud Onload profiles.
Issue 2 © Copyright 2019 Xilinx, Inc 6

Cloud Onload HAProxy Cookbook

Summary of benchmarking
3.2 Architecture for HAProxy benchmarking
Benchmarking was performed with two Dell R640 servers, with the following
specification:

Each server is configured to leave as many CPUs as possible available for the
application being benchmarked.

Each server has 2 NUMA nodes. 2 Solarflare NICs are fitted, each affinitized to a
separate NUMA node, and connected directly to the corresponding NIC in the other
server:

Figure 3: Architecture for HAProxy benchmarking

Server Dell R640

Memory 192GB

NICs 2 × X2541 (single port 100G):

• Each NIC is affinitized to a separate NUMA node.

CPU 2 × Intel® Xeon® Gold 6148 CPU @ 2.40GHz:

• Each CPU is on a separate NUMA node

• There are 20 cores per CPU

• Hyperthreading is enabled to give 40 hyperthreads per
NUMA node

OS Red Hat Enterprise Linux Server release 7.6 (Maipo)

Software HAProxy 1.9.7

NGINX 1.17

wrk2 4.0.0
Issue 2 © Copyright 2019 Xilinx, Inc 7

Cloud Onload HAProxy Cookbook

Summary of benchmarking
3.3 HAProxy benchmarking process
These are the high-level steps we followed to complete benchmarking with
HAProxy:

• Install and test NGINX on the first server.

• Install wrk2 on the first server.

• Install HAProxy on the second server.

• Start NGINX web servers on the first server.
All iterations of the test use the same configuration for consistency:
- 40 NGINX web servers are used.
- Each web server runs a single NGINX worker process.
- Each NGINX worker process is assigned to a dedicated CPU, distributed

across the NUMA nodes.
- Each NGINX worker process uses the NIC that is affinitized to the local

NUMA node for its CPU.
- Each NGINX worker process uses a dedicated port.
- Each NGINX web server is accelerated by Cloud Onload, to maximize the

responsiveness of the proxied server.

• Start HAProxy servers on the other server:
- One HAProxy server is used per NUMA node on the server.

The setup used has 2 NUMA nodes, and so 2 HAProxy servers are started.
- The first iteration of the test uses a single worker process per HAProxy

server.

• Start wrk2 on the first server to generate load.
All iterations of the test use the same configuration for consistency:
- 20 wrk2 processes are used.
- Each wrk2 process is assigned to a dedicated CPU, distributed across the

NUMA nodes.
- Each wrk2 process uses the NIC that is affinitized to the local NUMA node

for its CPU.
- Each wrk2 process is accelerated by Cloud Onload, to maximize the

throughput of each connection going to the HAProxy server.

• Record the response rate of the proxied web server, as the number of requests
per second.

• Increase the number of worker processes on each HAProxy server, and repeat
the test.
- Each worker process is assigned to a dedicated CPU, distributed across the

NUMA nodes.
Issue 2 © Copyright 2019 Xilinx, Inc 8

Cloud Onload HAProxy Cookbook

Summary of benchmarking
- Each worker process uses the NIC that is affinitized to the local NUMA
node for its CPU.

Continue doing this until the number of HAProxy worker processes on the
second server is the same as the number of NGINX worker processes on the
first web server. For the setup used, this is 40 processes.

Figure 4: HAProxy software usage

• Repeat all tests, accelerating HAProxy with Cloud Onload.

These steps are detailed in the remaining chapters of this Cookbook.

The scripts and Cloud Onload profiles used for this benchmarking, that perform the
above steps, are available on request from support@solarflare.com.
Issue 2 © Copyright 2019 Xilinx, Inc 9

mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20HAProxy%20benchmarking

Cloud Onload HAProxy Cookbook
 4 Evaluation

This chapter describes how the performance of the test system is evaluated. See:

• General server setup on page 10

• wrk2 client (on Load server) on page 11

• NGINX backend webservers (on Load server) on page 12

• HAProxy (on Proxy server) on page 13

• Graphing the benchmarking results on page 15.

4.1 General server setup
Each server is setup using a script that does the following:

1 Create a file that makes new module settings:
cat > /etc/modprobe.d/proxy.conf <<EOL
options sfc \\
 performance_profile=throughput \\
 rss_cpus=20 \\
 rx_irq_mod_usec=90 \\
 irq_adapt_enable=N \\
 rx_ring=512 \\
 piobuf_size=0
options nf_conntrack_ipv4 \\
 hashsize=524288
EOL

NOTE: This script is required only when running HAProxy with the kernel
network stack (i.e. without Cloud Onload).

2 Reload the drivers to pick up the new module settings:
onload_tool reload

3 Use the network-throughput tuned profile:
tuned-adm profile network-throughput

4 Stop various services:
systemctl stop irqbalance
systemctl stop iptables
systemctl stop firewalld

5 Increase the sizes of the OS receive and send buffers:
sysctl net.core.rmem_max=16777216 net.core.wmem_max=16777216

6 Configure huge pages:
sysctl vm.nr_hugepages=4096 > /dev/null
Issue 2 © Copyright 2019 Xilinx, Inc 10

Cloud Onload HAProxy Cookbook

Evaluation
7 Ensure the connection tracking table is large enough:
sysctl net.netfilter.nf_conntrack_max=$(($(sysctl --values
net.netfilter.nf_conntrack_buckets) * 4)) > /dev/null

8 Increase the system-wide and per-process limits on the number of open files:
sysctl fs.file-max=8388608 > /dev/null
sysctl fs.nr_open=8388608 > /dev/null

9 Increase the range of local ports, so that the server can open lots of outgoing
network connections:
sysctl -w net.ipv4.ip_local_port_range="2048 65535" > /dev/null

10 Increase the number of file descriptors that are available:
ulimit -n 8388608

11 Exclude from IRQ balancing the CPUs that are used for running HAProxy. For
example, to exclude CPUs 0 to 39:
IRQBALANCE_BANNED_CPUS=ff,ffffffff irqbalance --oneshot

4.2 wrk2 client (on Load server)
Set up 20 instances of wrk2, running on cores 40 to 59, and start them all. An
example command line for the first instance (core 40) is below.
EF_CLUSTER_SIZE=10 \
 taskset -c 40 \
 onload -p wrk-profile.opf \
 /opt/wrk2/wrk \
 -R 500000 \
 -c 100 \
 -d 60 \
 -t 1 \
 http://192.168.0.101:1080/1024.bin

This example runs a Requests per second test using a payload size of 1024 bytes
(HTTP GET with keepalive).

• The taskset -c parameter is changed for each instance, to use cores 40 to 59.

• Instances on the even cores (NUMA node 0) use the IP address for the NIC that
is affinitized to NUMA node 0 on the proxy server.

• Instances on the odd cores (NUMA node 1) use the IP address for the NIC that
is affinitized to NUMA node 1 on the proxy server.

• The port number is fixed at 1080. This is the port listened to by the proxy server.

• EF_CLUSTER_SIZE is set to the number of wrk2 instances which share the same
IP address (i.e. 10 per NUMA node in this case).
Issue 2 © Copyright 2019 Xilinx, Inc 11

Cloud Onload HAProxy Cookbook

Evaluation
4.3 NGINX backend webservers (on Load server)
Create a set of 40 backend webservers, with similar configuration for each
webserver, and start them all. An example command line to start the first webserver
(port 1050 of the NIC that is affinitized to NUMA node 0) is below:
onload -p nginx-server.opf sbin/nginx -c nginx-server-node0_1050.conf

The corresponding nginx-server-node0_1050.conf configuration file is shown
below.
cat >nginx-server-node0_1050.conf <<EOL
worker_processes 1;
worker_rlimit_nofile 8388608;
worker_cpu_affinity auto 00000000000000000000000000000001;

pid /var/run/nginx-node0_1050.pid;

events {
 multi_accept off;
 accept_mutex off;
 use epoll;
 worker_connections 200000;
}

error_log logs/error-node0_1050.log debug;

http {
 default_type application/octet-stream;

 access_log off;
 error_log /dev/null crit;

 keepalive_timeout 300s;
 keepalive_requests 1000000;

 server {
 listen 192.168.0.100:1050 reuseport;
 server_name localhost;

 open_file_cache max=100000 inactive=20s;
 open_file_cache_valid 30s;
 open_file_cache_errors off;

 location = /0 {
 return 204;
 }
 location / {
 root html-node0_1050;
 index index.html;
 }
 location = /upload {
 return 200 'Thank you';
 }
 }
}
EOL
Issue 2 © Copyright 2019 Xilinx, Inc 12

Cloud Onload HAProxy Cookbook

Evaluation
• The worker_cpu_affinity is changed for each instance, to use cores 0 to 39.

• Instances on the even cores (NUMA node 0) have the IP address in http →
server → listen set to use the NIC that is affinitized to NUMA node 0, and the
port address incrementing from 1050 upwards.

• Instances on the odd cores (NUMA node 1) have the IP address in http →
server → listen set to use the NIC that is affinitized to NUMA node 1, and the
port address also incrementing from 1050 upwards.

• The pid is changed for each instance.

• The error_log is changed for each instance

• The server → location → root is changed for each instance.

Static files for webservers
Each webserver serves static files from within the install directory, in a subdirectory
that is configured by the root directive. Each webserver instance uses its own
subdirectory, to avoid filesystem contention, and to model more closely a farm of
separate servers.

The static files used range from 400B to 1MB. They were generated using dd. The
example below creates the necessary files for the server that uses the above
configuration file:
mkdir -p /opt/nginx/html-node0_1050
for payload in 400 1024 10240 32768 65536 102400 131072 262144 1024000
> do
> dd if=/dev/urandom of=/opt/nginx/html-node0_1050/$payload \
> bs=$payload count=1 > /dev/null 2>&1
> done

4.4 HAProxy (on Proxy server)
Start various numbers of HAProxy worker processes (2, 8, 16, 24, 32 or 40), using
either the kernel network stack, or one of two different Onload-accelerated network
stacks. A total of 18 iterations are required.

Example command lines to start 16 worker processes are below:

• To start the proxy server with the kernel network stack, use the following:
sbin/haproxy -c haproxy-node0_16.conf
sbin/haproxy -c haproxy-node1_16.conf

• To start the proxy server with an Onload-accelerated network stack, use one of
the following, for the two different Onload profiles under test:
onload -p haproxy-balanced.opf sbin/haproxy -c haproxy-node0_16.conf
onload -p haproxy-balanced.opf sbin/haproxy -c haproxy-node1_16.conf

onload -p haproxy-performance.opf sbin/haproxy -c haproxy-node0_16.conf
onload -p haproxy-performance.opf sbin/haproxy -c haproxy-node1_16.conf
Issue 2 © Copyright 2019 Xilinx, Inc 13

Cloud Onload HAProxy Cookbook

Evaluation
The corresponding haproxy-node0_16.conf configuration file is shown below.
cat >haproxy-node0_16.conf <<EOL
global
 daemon
 log stdout local0 notice
 maxconn 200000
 nbproc 8
 cpu-map 1 0
 cpu-map 2 2
 cpu-map 3 4
 cpu-map 4 6
 cpu-map 5 8
 cpu-map 6 10
 cpu-map 7 12
 cpu-map 8 14

defaults
 log global
 timeout client 30s
 timeout server 30s
 timeout connect 30s

frontend MyFrontend
 bind 192.168.0.101:1080 process 1
 bind 192.168.0.101:1080 process 2
 bind 192.168.0.101:1080 process 3
 bind 192.168.0.101:1080 process 4
 bind 192.168.0.101:1080 process 5
 bind 192.168.0.101:1080 process 6
 bind 192.168.0.101:1080 process 7
 bind 192.168.0.101:1080 process 8
 default_backend MyBackend

backend MyBackend
 mode http
 balance static-rr
 server WebServer1050 192.168.0.100:1050
 server WebServer1051 192.168.0.100:1051
 server WebServer1052 192.168.0.100:1052
 server WebServer1053 192.168.0.100:1053
 server WebServer1054 192.168.0.100:1054
 server WebServer1055 192.168.0.100:1055
 server WebServer1056 192.168.0.100:1056
 server WebServer1057 192.168.0.100:1057
EOL

• The nbproc is set to the number of worker processes which share the same
NUMA node (i.e. half the number of worker processes in the test).

• The cpu-maps are set to use one core per worker process, all on the same
NUMA node (even core numbers in this case).
For the corresponding haproxy-node1_16.conf configuration file, the odd
core numbers are used. For example:
cpu-map 1 1
Issue 2 © Copyright 2019 Xilinx, Inc 14

Cloud Onload HAProxy Cookbook

Evaluation
• Instances on the even cores (NUMA node 0) have the IP addresses set as
follows:
- frontend MyFrontend → bind is set to use the NIC that is affinitized to

NUMA node 0, with the port number set to 1080.
- backend MyBackend → server is set to use the NIC that is affinitized to

NUMA node 0 on the load server, with all port numbers in the range 1050-
1069.

• Instances on the odd cores (NUMA node 1) have the IP addresses set as
follows:
- frontend MyFrontend → bind is set to use the NIC that is affinitized to

NUMA node 1, with the port number set to 1080.
- backend MyBackend → server is set to use the NIC that is affinitized to

NUMA node 1 on the load server, with all port numbers in the range 1050-
1069.

4.5 Graphing the benchmarking results
The results from each pass of wrk2 are now gathered and summed, so that they can
be further analyzed. They are then transferred into an Excel spreadsheet, to create
graphs from the data.
Issue 2 © Copyright 2019 Xilinx, Inc 15

Cloud Onload HAProxy Cookbook
 5 Benchmark results

This chapter presents the benchmark results that are achieved. See:

• Results on page 17

• Analysis on page 21.
Issue 2 © Copyright 2019 Xilinx, Inc 16

Cloud Onload HAProxy Cookbook

Benchmark results
5.1 Results

Connections per second

Figure 5: HAProxy connections per second

Table 1 below shows the results that were used to plot the graph in Figure 5 above.

Table 1: Thousands of connections per second

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

2 39 146 145 271% 268%

8 150 579 324 287% 116%

16 255 1181 1174 363% 360%

24 352 1695 1684 381% 378%

32 371 1947 1952 425% 427%

40 317 1887 2017 496% 537%
Issue 2 © Copyright 2019 Xilinx, Inc 17

Cloud Onload HAProxy Cookbook

Benchmark results
Requests per second

Figure 6: HAProxy requests per second

Table 2 below shows the results that were used to plot the graph in Figure 6 above.

Table 2: Thousands of requests per second for 1KB

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

2 80 253 250 218% 214%

8 318 1002 1002 215% 215%

16 716 2236 2231 212% 212%

24 1082 3595 3597 232% 232%

32 1405 4468 4669 218% 232%

40 1640 4690 4741 186% 189%
Issue 2 © Copyright 2019 Xilinx, Inc 18

Cloud Onload HAProxy Cookbook

Benchmark results
Throughput

Figure 7: HAProxy throughput

Table 3 below shows the results that were used to plot the graph in Figure 7 above.

Table 3: Throughput for 10K in Gbps

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

2 4.41 9.27 9.50 110% 115%

8 18.03 36.28 36.78 101% 104%

16 37.74 67.51 68.32 79% 81%

24 53.18 100.13 99.77 88% 88%

32 57.21 127.28 126.51 122% 121%

40 59.60 116.46 107.01 95% 80%
Issue 2 © Copyright 2019 Xilinx, Inc 19

Cloud Onload HAProxy Cookbook

Benchmark results
Latency

Figure 8: HAProxy latency

Table 4 below shows the results that were used to plot the graph in Figure 8 above.

Table 4: Latency for 1KB

Requests per
second

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

100000 2150 2120 2000 1% 8%

250000 2130 2120 1800 0% 18%

500000 2330 2080 1760 12% 32%

750000 2270 2170 1980 5% 15%

1000000 2800 2230 2000 26% 40%

1500000 8830000 2770 2490
Kernel cannot maintain
requested packet rate.
Gain is meaningless.

2000000 20790000 3130 2950

2500000 25870000 2400 2890

3000000 34210000 2300 2460
Issue 2 © Copyright 2019 Xilinx, Inc 20

Cloud Onload HAProxy Cookbook

Benchmark results
5.2 Analysis
When compared with the kernel stack, Cloud Onload delivers significant
improvements to all metrics.

Connections per second
The connections per second shows great improvement with Cloud Onload, peaking
at an improvement of 537% over the kernel stack. With large numbers of proxy
workers (32 to 40) the Cloud Onload performance levels out. This is most likely
because the load server is unable to generate and measure any more traffic, but
might be because the proxy server itself is saturated.

Requests per second
The requests per second also shows great improvement with Cloud Onload, peaking
at an improvement of 232% over the kernel stack. With 40 worker processes, results
continue to improve, indicating that further performance is available from Cloud
Onload.

Throughput
The throughput shows significant improvement with Cloud Onload, peaking at an
improvement of 122% over the kernel stack. With large numbers of proxy workers
(32 to 40) the Cloud Onload performance slightly decreases, either because the load
server cannot generate any more traffic, or because the proxy server itself is
saturated.

Latency
The latency figures are as output by wrk2, and show the time from when the should
have been sent (according to the configured packet rate), until when the packet was
actually received. The 99 percentile figure is reported.

When the kernel stack packet rate is raised above 1 million requests per second, it
can no longer maintain this rate. Jitter increases, the number of outliers exceeds 1%,
and so the reported latency suddenly and dramatically increases. Any further small
increase in load would make the server appear completely unresponsive to an end
user.

In contrast, Cloud Onload continues to deliver low latency with 3 million requests
per second, and is actually trending towards even lower latency. The stable and low
value for the 99th percentile of latency indicates low jitter and predictable
performance.
Issue 2 © Copyright 2019 Xilinx, Inc 21

Cloud Onload HAProxy Cookbook
 A Cloud Onload profiles

This appendix contains the Cloud Onload profiles used for this benchmarking. See:

• The wrk-profile Cloud Onload profile on page 22

• The nginx-server Cloud Onload profile on page 23

• The haproxy Cloud Onload profiles on page 24.

These profiles, along with the scripts used for this benchmarking, are available on
request from support@solarflare.com.

A.1 The wrk-profile Cloud Onload profile
The wrk-profile.opf Cloud Onload profile is as follows:
onload_set EF_SOCKET_CACHE_MAX 40000
onload_set EF_TCP_TCONST_MSL 1
onload_set EF_TCP_FIN_TIMEOUT 15
onload_set EF_HIGH_THROUGHPUT_MODE 1
onload_set EF_LOG_VIA_IOCTL 1
onload_set EF_NO_FAIL 1
onload_set EF_UDP 0

#ensure sufficient resources
onload_set EF_MAX_PACKETS 205000
onload_set EF_MAX_ENDPOINTS 400000
onload_set EF_FDTABLE_SIZE 8388608
onload_set EF_USE_HUGE_PAGES 2
onload_set EF_MIN_FREE_PACKETS 50000

#environment variable can overwrite
onload_set EF_LOAD_ENV 1

#spinning configuration
onload_set EF_POLL_USEC 100000
onload_set EF_SLEEP_SPIN_USEC 50
onload_set EF_EPOLL_SPIN 1

#scalable filters with clustering for outgoing connections
onload_set EF_SCALABLE_FILTERS 'any=rss:active'
onload_set EF_SCALABLE_FILTERS_ENABLE 1
onload_set EF_CLUSTER_NAME 'load'
onload_set EF_CLUSTER_SIZE 12 #needs to overwritten by environment

#shared local ports to improve rate of socket recycling
onload_set EF_TCP_SHARED_LOCAL_PORTS_MAX 28000
onload_set EF_TCP_SHARED_LOCAL_PORTS 28000
onload_set EF_TCP_SHARED_LOCAL_PORTS_PER_IP 1
Issue 2 © Copyright 2019 Xilinx, Inc 22

mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20HAProxy%20benchmarking

Cloud Onload HAProxy Cookbook

Cloud Onload profiles
onload_set EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST 1
onload_set EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK 1

#epoll configuration
onload_set EF_UL_EPOLL 3
onload_set EF_EPOLL_MT_SAFE 1

#reduce transmit CPU load
onload_set EF_TX_PUSH 0
onload_set EF_PIO 0
onload_set EF_CTPIO 0

Adjustments for potentially-lossy network environment
onload_set EF_TCP_INITIAL_CWND 14600
onload_set EF_DYNAMIC_ACK_THRESH 4
onload_set EF_TAIL_DROP_PROBE 1
onload_set EF_TCP_RCVBUF_MODE 1

A.2 The nginx-server Cloud Onload profile
The nginx-server.opf Cloud Onload profile is as follows:
onload_set EF_ACCEPTQ_MIN_BACKLOG 400
onload_set EF_SOCKET_CACHE_MAX 40000
onload_set EF_TCP_TCONST_MSL 1
onload_set EF_TCP_FIN_TIMEOUT 15
onload_set EF_TCP_SYNRECV_MAX 90000
onload_set EF_TCP_BACKLOG_MAX 400
onload_set EF_HIGH_THROUGHPUT_MODE 1
onload_set EF_LOG_VIA_IOCTL 1
onload_set EF_NO_FAIL 1
onload_set EF_UDP 0

#ensure sufficient resources
onload_set EF_MAX_PACKETS 205000
onload_set EF_MAX_ENDPOINTS 400000
onload_set EF_USE_HUGE_PAGES 2
onload_set EF_MIN_FREE_PACKETS 50000

#epoll configuration
onload_set EF_UL_EPOLL 3
onload_set EF_EPOLL_MT_SAFE 1

#don't use clustering when SO_REUSEPORT is set
onload_set EF_CLUSTER_IGNORE 1

#environment variable can overwrite
onload_set EF_LOAD_ENV 1

#spinning configuration
onload_set EF_POLL_USEC 100000
onload_set EF_SLEEP_SPIN_USEC 50
onload_set EF_EPOLL_SPIN 1

#reduce transmit CPU load
onload_set EF_TX_PUSH 0
Issue 2 © Copyright 2019 Xilinx, Inc 23

Cloud Onload HAProxy Cookbook

Cloud Onload profiles
onload_set EF_PIO 0
onload_set EF_CTPIO 0

Adjustments for potentially-lossy network environment
onload_set EF_TCP_INITIAL_CWND 14600
onload_set EF_DYNAMIC_ACK_THRESH 4
onload_set EF_TAIL_DROP_PROBE 1
onload_set EF_TCP_RCVBUF_MODE 1

A.3 The haproxy Cloud Onload profiles
There are two haproxy Cloud Onload profiles.

• The balanced profile gives excellent throughput, with low latency. It has
reduced CPU usage at lower traffic rates.

• The performance profile is latency focused. It constantly polls for network
events to achieve the lowest latency possible, and so has higher CPU usage.

The differences between these profiles are minor, and are in the profile files. See:

• The haproxy-balanced profile on page 24

• The haproxy-performance profile on page 24.

The majority of the settings are common to both profiles, and are in separate shared
files that each profile sources or includes. See:

• The haproxy-config profile fragment on page 25.

• The reverse-proxy-throughput profile fragment on page 27.

The haproxy-balanced profile
The haproxy-balanced.opf Cloud Onload profile is as follows:
. ${PROXY_CONFIG_DIR}/haproxy-config.opf-fragment
onload_import ${PROXY_CONFIG_DIR}/reverse-proxy-throughput.opf-fragment

The haproxy-performance profile
The haproxy-performance.opf Cloud Onload profile is as follows:
. ${PROXY_CONFIG_DIR}/haproxy-config.opf-fragment
onload_set EF_TX_PUSH 1
onload_set EF_SLEEP_SPIN_USEC 0
onload_import ${PROXY_CONFIG_DIR}/reverse-proxy-throughput.opf-fragment
Issue 2 © Copyright 2019 Xilinx, Inc 24

Cloud Onload HAProxy Cookbook

Cloud Onload profiles
The haproxy-config profile fragment
The haproxy-config.opf-fragment file, sourced by both the above profiles, is as
follows:
Tuning profile for haproxy with OpenOnload acceleration.

User may supply the following environment variables:

PROXY_WORKERS - the number of worker processes that haproxy is
configured to use. Overrides value automatically
detected from haproxy configuration

For diagnostic output
module="haproxy-balanced profile"

Parse the config file
read_file() {
 local setting
 eval "local worker_values=$(perl -ne 'print "$1 " if'"/^\s*nbproc\s+(\S+)/" $1)" # need
eval as the value can use shell variables

 for workers in $worker_values
 do
 setting=$workers
 done
 echo $setting
}

Parse the config file or directory
read_file_or_dir() {
 local name="$1"
 local setting
 if [-f $name]
 then
 echo $(read_file "$name")
 elif [-d $name]
 then
 for file in $name/*.cfg
 do
 if [-f $file]
 then
 local possible=$(read_file "$file")
 if [-n "$possible"]
 then
 setting=$possible
 fi
 fi
 done
 echo $setting
 fi
}

Scan all the config files which haproxy would use
determine_worker_processes() {
Issue 2 © Copyright 2019 Xilinx, Inc 25

Cloud Onload HAProxy Cookbook

Cloud Onload profiles
 local file
 local num=1 # use one as the default to match haproxy without nbproc configured

 # Look for a -f, -- or -C option
 local state="IDLE"
 for option in "$@"
 do
 if ["$state" = "MINUS_f"]
 then
 file=$option
 num=$(read_file_or_dir "$file")
 state="IDLE"
 elif ["$state" = "MINUS_MINUS"]
 then
 file=$option
 num=$(read_file_or_dir "$file")
 elif ["$state" = "MINUS_C"]
 then
 cd $option
 state="IDLE"
 elif ["$option" = "-f"]
 then
 state="MINUS_f"
 elif ["$option" = "--"]
 then
 state="MINUS_MINUS"
 elif ["$option" = "-C"]
 then
 state="MINUS_C"
 fi
 done

 echo $num
}

Define the number of workers
calc_workers=$(determine_worker_processes "$@")
num_workers=${PROXY_WORKERS:-$calc_workers}
if ! [-n "$num_workers"]; then
 fail "ERROR: Environment variable PROXY_WORKERS is not set and worker count cannot be
determined from haproxy configuration"
fi
log "$module: configuring for $num_workers workers (from config appear to be
$calc_workers)"

onload_set EF_PIPE 0
Issue 2 © Copyright 2019 Xilinx, Inc 26

Cloud Onload HAProxy Cookbook

Cloud Onload profiles
The reverse-proxy-throughput profile fragment
The reverse-proxy-throughput.opf-fragment file, included by both the above
profiles, is as follows:
Enable epoll implementation that scales with large numbers of fds.
onload_set EF_UL_EPOLL 3

Assert application use of epoll is multithread safe.
onload_set EF_EPOLL_MT_SAFE 1

Enable clustering to spread connections over workers.
Name will need to be overridden for each cluster if
wanting to use multiple clusters.
onload_set EF_CLUSTER_SIZE "$num_workers"
onload_set EF_CLUSTER_NAME prox

Force termination of orphaned stacks on restart.
onload_set EF_CLUSTER_RESTART 1

Allow sharing of stacks in cluster by two processes
to allow hot/seamless restart.
onload_set EF_CLUSTER_HOT_RESTART 1

Enable scalable filters to avoid using a separate filter
for each connection. A proxy both accepts passive connections
and makes active connections.
This will need to be overridden to not use 'any' interface if
wanting separate clusters on different interfaces.
onload_set EF_SCALABLE_FILTERS "any=rss:active:passive"

Scalable filters mode for applications using master/worker
hierarchy.
onload_set EF_SCALABLE_FILTERS_ENABLE 2

Connections not accepted through scalable filters interface
are refused.
onload_set EF_SCALABLE_LISTEN_MODE 1

Enable shared local ports which allows Onload to recycle resources
for active open connections more efficiently.
A large number of shared local ports are created and the maximum
is set to the same value. I.e. all shared local ports are
allocated on stack creation and not allocated later.
onload_set EF_TCP_SHARED_LOCAL_PORTS 570000
onload_set EF_TCP_SHARED_LOCAL_PORTS_MAX $EF_TCP_SHARED_LOCAL_PORTS

EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST allows recycling ports
immediately when CLOSED state is reached via LAST-ACK (i.e.
when socket received FIN from server rather than sent FIN via
close())
onload_set EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST 1

Validate shared local ports are used by setting
EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK=1 which causes connect()
to fail when shared local ports are not used.
onload_set EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK 1
Issue 2 © Copyright 2019 Xilinx, Inc 27

Cloud Onload HAProxy Cookbook

Cloud Onload profiles

Use a separate pool of shared local ports per local IP
onload_set EF_TCP_SHARED_LOCAL_PORTS_PER_IP 1
Set the limit of the shared ports pool per IP/cluster
onload_set EF_TCP_SHARED_LOCAL_PORTS_PER_IP_MAX 32000

How many more shared local ports to allocate if current pool
exhausted. Unused when all allocated at startup.
onload_set EF_TCP_SHARED_LOCAL_PORTS_STEP 2048

Support lots of sockets and enable socket caching.
onload_set EF_MAX_ENDPOINTS 1000000
onload_set EF_SOCKET_CACHE_MAX $(($EF_MAX_ENDPOINTS / 4))

Enable spinning with sleep spin to reduce CPU load
onload_set EF_POLL_USEC 1000000
onload_set EF_SLEEP_SPIN_USEC 50

Allocate plenty of packet memory and force hugepages.
onload_set EF_MAX_PACKETS $(((180000*16) / $num_workers))
onload_set EF_PREALLOC_PACKETS 1
onload_set EF_USE_HUGE_PAGES 2

Tune TCP socket parameters.
onload_set EF_TCP_SYNRECV_MAX 1000000

Disable low-latency sends to minimise CPU overheads.
onload_set EF_TX_PUSH 0
onload_set EF_PIO 0
onload_set EF_CTPIO 0

Prevent spinning inside socket calls. (Spinning will take place
on epoll_wait polling).
onload_set EF_PKT_WAIT_SPIN 0
onload_set EF_TCP_RECV_SPIN 0
onload_set EF_TCP_SEND_SPIN 0
onload_set EF_TCP_CONNECT_SPIN 0
onload_set EF_TCP_ACCEPT_SPIN 0
onload_set EF_UDP_RECV_SPIN 0
onload_set EF_UDP_SEND_SPIN 0

Forward packets arriving via scalable filter to the kernel
when required (e.g. IGMP)
onload_set EF_KERNEL_PACKETS_BATCH_SIZE 1

Adjustments for potentially-lossy network environment
Use a minimum congestion window of 10 MSS
onload_set EF_TCP_INITIAL_CWND 14600

Set how many unacked segments force ACK. Increasing this
will reduce network load but could result in peer needing to
Issue 2 © Copyright 2019 Xilinx, Inc 28

Cloud Onload HAProxy Cookbook

Cloud Onload profiles
retransmit more data if network is lossy.
onload_set EF_DYNAMIC_ACK_THRESH 4

Force enable tail drop probe to retransmit faster.
(If not set, uses /proc/sys/net/ipv4/tcp_early_retrans
which is also on by default)
onload_set EF_TAIL_DROP_PROBE 1

Enable dynamically sized TCP receive buffers.
onload_set EF_TCP_RCVBUF_MODE 1
Issue 2 © Copyright 2019 Xilinx, Inc 29

Cloud Onload HAProxy Cookbook
 B Installation and configuration

This appendix describes how to install and configure the software distributions used
for this benchmarking. See:

• Installing HAProxy on page 30

• Installing NGINX on page 31

• Installing wrk2 on page 32

• Installing Cloud Onload on page 33.

B.1 Installing HAProxy
This section describes how to install and configure HAProxy.

Installation
NOTE: For a reference description of how to install HAProxy, see the README file in
the distribution, and the documentation at http://www.haproxy.org.

In summary:

1 If you already have an old HAProxy installation on your system, remove the old
installation:
rm -f /opt/haproxy
rm -rf /opt/haproxy-1.9.7

2 Change to /opt (the parent directory of the HAProxy installation):
cd /opt

3 Download the HAProxy tarball and unpack it:
curl -s http://www.haproxy.org/download/1.9/src/haproxy-1.9.7.tar.gz | \
 tar xzf -

4 Make and install HAProxy:
make -C /opt/haproxy-1.9.7 TARGET=linux2628

5 Create a soft link to the installed version of HAProxy
ln -s /opt/haproxy-1.9.7 /opt/haproxy
Issue 2 © Copyright 2019 Xilinx, Inc 30

http://www.haproxy.org

Cloud Onload HAProxy Cookbook

Installation and configuration
B.2 Installing NGINX
This section describes how to install and configure NGINX.

Installation
NOTE: For a reference description of how to install NGINX, see
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-
source/.

In summary:

1 If you already have an old NGINX installation on your system:
a) Back up your configs and logs:

cp -a /etc/nginx /etc/nginx-plus-backup
cp -a /var/log/nginx /var/log/nginx-plus-backup

b) Remove the old installation:
rm -rf /opt/nginx

2 Create a new NGINX directory:
mkdir -p /opt/nginx

3 Change to a temporary directory:
cd $(mktemp -d)

4 Clone NGINX from its git repository:
git clone https://github.com/nginx/nginx .

5 Configure NGINX:
./auto/configure --prefix=/opt/nginx

6 Make and install NGINX:
make install

7 Check the NGINX binary version to ensure that you have NGINX installed
correctly:
nginx -v
nginx version: nginx/1.17

8 Start NGINX:
systemctl start nginx

or just:
nginx
Issue 2 © Copyright 2019 Xilinx, Inc 31

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/

Cloud Onload HAProxy Cookbook

Installation and configuration
9 Verify access to Web Server

B.3 Installing wrk2
This section describes how to install and configure wrk2.

Installation
NOTE: For a reference description of how to install wrk2, see:
https://github.com/giltene/wrk2/wiki/Installing-wrk2-on-Linux.

In summary:

1 If the build tools are not already installed, install them:
yum groupinstall 'Development Tools'

2 If the OpenSSL dev libs are not already installed, install them:
yum install -y openssl-devel

3 If git is not already installed, install it:
yum install -y git

4 Create a directory to hold wrk2:
mkdir -p Onload_Testing/WRK2
cd Onload_Testing/WRK2

5 Use git to download wrk2:
git clone https://github.com/giltene/wrk2.git

6 Build wrk2:
cd wrk2
make

7 Copy the wrk2 executable to a location on your PATH. For example:
cp wrk2 /usr/local/bin
Issue 2 © Copyright 2019 Xilinx, Inc 32

https://github.com/giltene/wrk2/wiki/Installing-wrk2-on-Linux

Cloud Onload HAProxy Cookbook

Installation and configuration
B.4 Installing Cloud Onload
For instructions on how to install and configure Cloud Onload, refer to the Onload
User Guide (SF-104474-CD). This is available from https://support.solarflare.com/.
Issue 2 © Copyright 2019 Xilinx, Inc 33

https://support.solarflare.com/

	Table of Contents
	1 Introduction
	1.1 About this document
	1.2 Intended audience
	1.3 Registration and support
	1.4 Download access
	1.5 Further reading

	2 Overview
	2.1 HAProxy overview
	2.2 NGINX overview
	2.3 Wrk2 overview
	2.4 Cloud Onload overview

	3 Summary of benchmarking
	3.1 Overview of HAProxy benchmarking
	3.2 Architecture for HAProxy benchmarking
	3.3 HAProxy benchmarking process

	4 Evaluation
	4.1 General server setup
	4.2 wrk2 client (on Load server)
	4.3 NGINX backend webservers (on Load server)
	Static files for webservers

	4.4 HAProxy (on Proxy server)
	4.5 Graphing the benchmarking results

	5 Benchmark results
	5.1 Results
	Connections per second
	Requests per second
	Throughput
	Latency

	5.2 Analysis
	Connections per second
	Requests per second
	Throughput
	Latency

	A Cloud Onload profiles
	A.1 The wrk-profile Cloud Onload profile
	A.2 The nginx-server Cloud Onload profile
	A.3 The haproxy Cloud Onload profiles
	The haproxy-balanced profile
	The haproxy-performance profile
	The haproxy-config profile fragment
	The reverse-proxy-throughput profile fragment

	B Installation and configuration
	B.1 Installing HAProxy
	Installation

	B.2 Installing NGINX
	Installation

	B.3 Installing wrk2
	Installation

	B.4 Installing Cloud Onload

