
Lab Workbook Multi-Output Circuits: Encoders, Decoders, and Memories

 www.xilinx.com/university Nexys4 3-1
 xup@xilinx.com
 © copyright 2013 Xilinx

Multi-Output Circuits: Encoders, Decoders, and
Memories

Introduction

Boolean expressions are used to output a Boolean function of number of variables. Dataflow construct
like assign can be used to model such functions. There are circuits which have multiple outputs and
multiple inputs. In this lab you will design encoders, decoders, and read only memories. Please refer to
the Vivado tutorial on how to use the Vivado tool for creating projects and verifying digital circuits.

Objectives

After completing this lab, you will be able to:
• Design multi-output decoder circuits using behavioral modeling
• Design encoders using behavioral modeling
• Use read only memories using reg data type and $readmemb system task available in Verilog

Multi-output Decoder Circuits Part 1

Decoders are combinatorial circuits which have multiple outputs. They are widely used in memory chips
to select one of the words addressed by the address input. For example, an 8-words memory will have
three bit address input. The decoder will decode the 3-bit address and generate a select line for one of
the eight words corresponding to the input address. The 3-to-8 decoder symbol and the truth table are
shown below.

x0 x1 x2 y7 y6 y5 y4 y3 y2 y1 y0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 1 0 0 0

 Such circuits, also known as binary decoders, and can be modeled using dataflow statements as only
each output is true for a unique input combination.

1-1. Design a 3-to-8 line decoder. Let the input be through SW2-SW0 and
output be on LED7-LED0. Use dataflow modeling constructs.

1-1-1. Open Vivado and create a blank project called lab3_1_1.

1-1-2. Create and add the Verilog module, naming it decoder_3to8_dataflow.v, that defines the 3-to-8
line decoder with three-bit input x and 8-bit output y. Use dataflow modeling constructs.

1-1-3. Add the provided testbench (decoder_3to8_dataflow_tb.v) to the project.

1-1-4. Simulate the design for 50 ns and verify that the design works.

Multi-Output Circuits: Encoders, Decoders, and Memories Lab Workbook

Nexys4 3-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

1-1-5. Create and add the XDC file to the project. Assign x to SW2-SW0 and y to LED7-LED0. Note
that one and only one LED will be turned ON for a given input combination.

1-1-6. Synthesize and implement the design.

1-1-7. Generate the bitstream, download it into the Nexys4 board, and verify the functionality.

1-2. Design and implement a popular IC, 74138, functionality using dataflow
modeling and the decoder you used in 1-1. The IC symbol and truth table
are given below.

g1 g2a_n g2b_n x0 x1 x2 y0 y1 y2 y3 y4 y5 y6 y7
0 x x x x x 1 1 1 1 1 1 1 1
x 1 x x x x 1 1 1 1 1 1 1 1
x x 1 x x x 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 0 1 1 0 1 1 1 1 1 1
1 0 0 0 1 0 1 1 0 1 1 1 1 1
1 0 0 0 1 1 1 1 1 0 1 1 1 1
1 0 0 1 0 0 1 1 1 1 0 1 1 1
1 0 0 1 0 1 1 1 1 1 1 0 1 1
1 0 0 1 1 0 1 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 1 1 1 0

X = don’t care

Note that this is very similar to the one you had created in 1-1, It has additional control (Enable)
signals G1, /G2A, and /G2B. These enable signals simplify decoding in some systems.

1-2-1. Open Vivado and create a blank project called lab3_1_2.

1-2-2. Create and add the Verilog module, named decoder_74138_dataflow, instantiating the model you
had developed in 1-1. Add additional logic, by using the dataflow modeling constructs, to model
the desired functionality.

1-2-3. Add the provided testbench (decoder_74138_dataflow_tb.v) to the project.

1-2-4. Simulate the design for 200 ns and verify that the design works.

1-2-5. Add the XDC file you had created in 1-1 to the project. Modify the XDC file to assign g1 to SW7,
g2a_n to SW6, and g2b_n to SW5.

1-2-6. Synthesize and implement the design.

1-2-7. Generate the bitstream, download it into the Nexys4 board, and verify the functionality.

Lab Workbook Multi-Output Circuits: Encoders, Decoders, and Memories

 www.xilinx.com/university Nexys4 3-3
 xup@xilinx.com
 © copyright 2013 Xilinx

Multi-output Encoder Circuits Part 2

Encoder circuit converts information from one format (code) to another for the purposes of
standardization, speed, secrecy, security, or saving space by shrinking size. In digital circuits, encoding
information may reduce size and/or prioritize functions. Widely used encoder circuits examples include
priority encoders, Huffman encoders, etc.

2-1. Design an 8-to-3 priority encoder, whose truth table is given below. Use
behavioral modeling.

2-1-1. Open Vivado and create a blank project called lab3_2_1.

2-1-2. Create and add the Verilog module with v and en_in_n input; y, en_out, and gs output. The v
input will be 8-bit data inputs (labeled 0 to 7 in the table), en_in_n input will be one bit (E1), y
output will be 3-bit (A2, A1, A0), en_out will be one bit output (GS), and en_out will be one bit
output (E0).

2-1-3. Create and add the XDC file to the project. Assign x input to SW7-SW0, en_in_n to SW15, y to
LED2-LED0, en_out to LED7, and gs to LED6.

2-1-4. Synthesize and implement the design.

2-1-5. Generate the bitstream, download it into the Nexys4 board, and verify the functionality.

Read-Only Memories Part 3

Read-only memories (ROM) consist of interconnected arrays to store an array of binary information. Once
the binary information is stored it can be read any time but cannot be altered. Large ROMs are typically
used to store programs and/or data which will not change by the other circuitry in the system. Small
ROMs can be used to implement combinatorial circuits. A ROM uses a decoder, similar to one designed
in 1-1 earlier, to address a particular location.

A ROM will have m address input pins and n information output pins to store 2
m
 words information, each

word being n bit in length. The content is accessed by placing an address and the content of the
corresponding word is read at the output pins.

In Verilog HDL, memories can be defined as a two dimensional array using reg data type, as illustrated

below:

reg [3:0] MY_ROM [15:0];

Multi-Output Circuits: Encoders, Decoders, and Memories Lab Workbook

Nexys4 3-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

where reg is data type, MY_ROM is a 16x4 memory with 16 locations each location being 4-bit wide. If

the memory is to be modeled as read only then two things must happen: (i) memory should only be read
and not written into, and (ii) memory should somehow be initialized with the desired content. Verilog HDL
provides a system task, called $readmemb, to initialize memory with a content. Following is an example
of definition and usage of 4x2 ROM.

module ROM_4x2 (ROM_data, ROM_addr);

 output [1:0] ROM_data;

 input [1:0] ROM_addr;

 reg [1:0] ROM [3:0]; // defining 4x2 ROM

 assign ROM_data = ROM[ROM_addr]; // reading ROM content at the address

ROM_addr

 initial $readmemb (“ROM_data.txt”, ROM, 0, 3); // load ROM content from

ROM_data.txt file

endmodule

The ROM_data.txt file, for this example, should be present in the same directory where the model is
defined (since no directory path is given), and may have 8 or less lines such as:
 10
 0x
 11
 00

Note that if the number of lines is less than the size of the ROM, the unspecified locations will be
initialized with 0s. Also, note that there is another system task available, called $readmembh, which
allows the data file to be written using hexadecimal symbols.

3-1. Design a 2-bit comparator that compares two 2-bit numbers and asserts
outputs indicating whether the decimal equivalent of word A is less than,
greater than, or equal to that of word B. You will model ROM and use
$readmemb task.

3-1-1. Open Vivado and create a blank project called lab3_3_1.

3-1-2. Create and add the Verilog module with two inputs (a, b) and three outputs (lt, gt, and eq) using
ROM and $readmemb system task.

3-1-3. Create and add the XDC file, assigning a to SW3 to SW2, b to SW1 to SW0, lt to LED2, gt to
LED1 and eq to LED0.

3-1-4. Create and add a text file that describes design output.

3-1-5. Synthesize and implement the design.

3-1-6. Generate the bitstream, download it into the Nexys4 board, and verify the functionality.

Lab Workbook Multi-Output Circuits: Encoders, Decoders, and Memories

 www.xilinx.com/university Nexys4 3-5
 xup@xilinx.com
 © copyright 2013 Xilinx

3-2. Implement 2-bit by 2-bit multiplier using a ROM. Output the product in
binary on four LEDs.

3-2-1. Open Vivado and create a blank project called lab3_3_2.

3-2-2. Create and add the Verilog module with two 2-bit inputs (a, b), a 4-bit product output using ROM
and $readmemb system task.

3-2-3. Create and add the XDC file, assigning a to SW3-SW2, b to SW1-SW0, and product to LED3-

LED0.

3-2-4. Create and add a text file that describes the design output.

3-2-5. Synthesize and implement the design.

3-2-6. Generate the bitstream, download it into the Nexys4 board, and verify the functionality.

Conclusion

In this lab, you learned how to model multiple output circuits such as decoders, encoders, and ROM. You
also learned how to use a system task $readmemb to initialize ROM memory. There are more system
tasks which the language supports and you will learn some of them in the next lab.

