
© Copyright 2020 Xilinx

Accelerating Real-Time AI Inference

Dachang Li, Shuai Zhang

Vitis AI Technical Marketing

© Copyright 2020 Xilinx

Agenda

2

Vitis/Vitis AI Overview

Design Overview

Design Implementation

Summary

© Copyright 2020 Xilinx

Vitis/Vitis AI Overview

3

© Copyright 2020 Xilinx

Xilinx runtime library (XRT)

Vitis target platform

Domain-specific

development
environments

Vitis core

development kit

Vitis accelerated

libraries

Vision & Image

Processing

Math & Linear

Algebra

Vitis AI Vitis Video

Partners

Genomics,

Data Analytics,

And moreQuantitative

Finance

Analyzers DebuggersCompilers

Vitis Unified Software Platform

AlveoZynq-7000 Versal ACAPsZynq UltraScale+ MPSoC

4

© Copyright 2020 Xilinx

Vitis Target Platform
Base Hardware, Software Architecture

For PCIe Accelerator Cards, Includes

 PCIe® Interface Logic

 DDR memory interface controllers

 XDMA logic etc.

 Hardware Config & Lifecycle Management

For Embedded Devices, Includes

 Operating System

 Runtime library (XRT)

 Runtime drivers (XRT)

 Firmware & Boot loader

Runtime
Library

& Drivers
Boot

Loader

Operating System

Embedded Software

Ready-to-Use Vitis Target Platforms

OR

Build Your Own using Vivado Design Suite

Host
Application

Dynamic Region

Host (x86 or ARM)

© Copyright 2020 Xilinx

All Developers Can Build and Deploy on All Platforms

Build

Deploy
Zynq UltraScale+ MPSoC AlveoZynq-7000 Versal ACAPs

Embedded

Developers

Enterprise

Application Developers

Enterprise Infrastructure

Developers

Data & AI

Scientists

© Copyright 2020 Xilinx

Develop: Use Extensive, Open Source Vitis Libraries

500+ functions across multiple libraries for performance-optimized out-of-the-box acceleration

Vision &

Image

Quantitative

Finance

Data Analytics &

Database

Data Compression Data Security

Math Linear Algebra Statistics DSP Data Management

Domain-Specific Libraries

Common Libraries Partner Libraries

© Copyright 2020 Xilinx

Vitis Vision Library

8

Performance-optimized kernel and primitive functions for

 Color and bit-depth conversion, channel extractions, pixel-wise arithmetic ops.

 Geometric transforms, image statistics, image filters

 Feature detection and classifiers

 3D reconstructions

 Motion Analysis and Tracking

Support for color image processing and multi-channel support

Multiple pixel/clock processing to meet through requirements

Familiar OpenCV API interface

© Copyright 2020 Xilinx

Frameworks

Vitis AI

development kit

Vitis AI models

Deep Learning

Processing Unit

(DPU)

Vitis AI: ML Inference Solution

Xilinx runtime library (XRT)

AI Optimizer AI Quantizer AI Compiler AI Profiler AI Library

60+ pretrained, optimized
reference models

Supports deploying
custom AI models to
Xilinx devices

Optimized ”processor-like”
IP for groups of AI
workloads

9

© Copyright 2020 Xilinx

Steps to Accelerate Applications with Vitis

Design Accelerated KernelsProfile Applications and Identify

Performance-critical Functions

Build, Analyze & Debug : Validate

Performance Goals Met
Deploy Accelerated Application

on Xilinx Platforms

Runtime

Executable

1 2

3 4

© Copyright 2020 Xilinx

Independent Development of SW and HW

Kernel Source

v++ Compiler and Linker

XCLBIN FPGA/ACAP DSA

x86/ARM Source

gcc/g++

XRT

Accelerated Design

Software Development Accelerator Development

Platform

11

© Copyright 2020 Xilinx

Design Overview

12

© Copyright 2020 Xilinx

Basic Idea

Build a real-time human detection application based on zcu104, Vitis AI model

zoo, Vitis AI library, DPU and Vision library.

ML Inference (Human detection)

on the ZCU104

Real time

detection result

13

Live Input

© Copyright 2020 Xilinx

System Configuration

14

Camera

 E-CON 3.4MP USB camera

 Input format: UVYV, 2304x1296@30FPS

ML Network

 Caffe RefineDet (https://arxiv.org/abs/1711.06897)

 Dataset: people class from COCO2014

 Input format: BGR, 480x360

 Computation amount: ~120GOP/frame

DPU

 Dual B4096@300MHz

Target Performance

 30FPS end-to-end detection

https://arxiv.org/abs/1711.06897

© Copyright 2020 Xilinx

RefineDet

15

Background

 Improved version of SSD with addition of anchor refinement module (ARM), object detection
module (ODM) and transfer connection block (TCB) for high accuracy

 One-stage detection network level speed performance with two-stage network level
accuracy

Vitis AI Modification

 The version provided by Xilinx model zoo has been modified based on the use case demand
and Vitis AI solution constrain

 Details can be found in Vitis In-Depth Tutorial Machine Learning Introduction Module 5

https://github.com/Xilinx/Vitis-AI/tree/master/AI-Model-Zoo
https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/master/Machine_Learning/Introduction/03-Basic/Module_5/network_training.md

© Copyright 2020 Xilinx

Vitis AI Deployment

16

Vitis AI library enables fast deployment for common

networks

 Model specific libraries for released networks

 Optimized common post-process function (xnnpp)

 Low-level API for custom model deployment (dpu_task)

Model library “RefinetDet Detection” will be used in

this design to handle ML inference

© Copyright 2020 Xilinx

Pre-processing for ML Inference

17

RefineDet requires following image pre-process to be correctly performed

 Channel order: BGR

 Image resize: 480x360

 Mean value subtraction: 104, 117, 123 (B,G,R)

 Scale: 1

Vitis AI will take care of mean value and scale value when using model

specific library

Color space conversion and resize need to be implemented by users

© Copyright 2020 Xilinx

Data Flow

18

Different threads are designed in pipelined style and will run in parallel to

maximize throughput

1920x1080

Decode Queue

480x360

Decode Queue

Decode

push

push

SORTDPU

1920x1080

Gui Queue

Result Sort

Queue

push

pop

pop

GUI

pop

pop

push

Camera

Thread

Queue

© Copyright 2020 Xilinx

Detailed Design Implementation

19

© Copyright 2020 Xilinx

OpenCV on ARM Vitis AI Library on DPU

Start with Baseline Application

 In the baseline implementation, OpenCV will be used for image processing for the simplicity and will run on

the ARM processor

 The Decode thread will call resize function two times for 1920x1080 and 480x360 frames respectively

 ML inference will run mainly on DPU in PL with very small portion of Vitis AI library process on the ARM

(mean value subtraction in this case)

20

Camera BGR frame

2304x1296, UVYV 2304x1296, BGR
Queue

Queue

480x360, BGR

1920x1080, BGR

RefinetDet

Detection

BBox

Overlay
Display

Frame@1080p

With bounding box

ARM processor

VitisAI library/DPU

© Copyright 2020 Xilinx

Easy Implementation of Core Function

21

Both image processing and DPU inferencing functions can be implemented

with few lines of code
Function “V4l2Capture::read_images” is

implemented by
- “cv::cvtColor”
- “cv::resize”

DPU inferencing is implemented by

- create_dpu_filter
- vitis::ai::RefineDet

© Copyright 2020 Xilinx

Hardware Integration in Software Way

22

All the hardware blocks are integrated into the system using the v++ compiler,

which looks and feels like a standard SW compiler

To build a system with kernels, or ”.xo”s, we can link with a Makefile

To integrate the DPU, just copy/paste the source from the Vitis AI repository

and add it to your project – no need to open Vivado!

 Need two DPUs for your system? Three? Easily configure system topology with version-
controllable parameters

Numerous examples available online and in our Git repositories

ZCU104_XOS = dpu_b4096_zcu104.xo

This project has a lot of ML – add a second DPU!

nk=DPUCZDX8G:2

© Copyright 2020 Xilinx

Performance Estimation

23

We could implement baseline application very easily but how about the

performance?

Rough ML inference estimation

 Single B4096 DPU core provides around 1200GOP peak performance at 300MHz

 RefineDet consumes around 120GOP to process one frame

 In best case (100% efficiency), 10FPS for single core or 20FPS for dual cores which cannot
meet the target performance

Don’t forget the image process has to be taken into consideration too!

 The overall end-to-end performance will be far from our target

What if we want to see actual application profiling information?

© Copyright 2020 Xilinx

Vitis Analyzer

24

Vitis analyzer is the powerful tool to visualize application profiling information,

including SW code running time, kernel compute time, data movement and etc.

Vitis AI profiler has been integrated into Vitis analyzer latest version to better

profile applications based on DPU and Vitis AI library

© Copyright 2020 Xilinx

Vitis Analyzer Usage – Step 1

25

Create cfg.json used to profile DPU, common libraries and custom functions

 Common libraries: vitis-ai-library, opencv, vart and xnnpp_post_process

 Custom function: DecodeThread::run, DpuThread::run and etc

{

"options": {

"runmode": "normal"

},

"trace": {
"enable_trace_list": ["vitis-ai-library", "opencv", "vart","xnnpp_post_process”, "custom"]

},

"trace_custom": ["read_images_with_kernel",

"DecodeThread::run",

"DpuThread::run",
"GuiThread::run",

"SortThread::run"]

}

Add custom function

name for profiling

© Copyright 2020 Xilinx

Vitis Analyzer Usage – Step2

26

Create xrt.ini

 Profiling of HLS kernel needs the “xrt.ini” file to specified mode parameters

 Place it in the same directory as the application

The config file format is shown as below:

[Debug]

Profile=true

xrt_profile=true

vitis_ai_profile=true

lop_trace=true
data_transfer_trace=coarse

© Copyright 2020 Xilinx

Vitis Analyzer Usage – Step 3

27

Use “vaitrace” to run the application with config file

 vaitrace -c cfg.json ./<application_name> <model_name> 0 -t <thread_num>

The meta data will be generated after the application is stopped.

├── hal_host_trace.csv

├── profile_summary.csv

├── vart_trace.csv

├── vitis_ai_profile.csv

└── xclbin.ex.run_summary

© Copyright 2020 Xilinx

Vitis Analyzer Usage – Step 4

28

Inspect summary files on the host machine with Vitis Analyzer

 Transfer meta files from step 3 to host machine

 On the host, run the command vitis_analyzer

 Click File -> Open Summary

 Select and open the the summary file

 Check execution time of each components

 Find performance bottleneck for improvement

© Copyright 2020 Xilinx

Custom Functions Hierarchy

29

Vitis Analyzer will give time information based on function names

 In this design, the hierarchy of custom functions is as below

 DecodeThread and DpuThread are two main components

DecodeThread::run

cv::resize

cv::cvtcolor

DpuThread::run

vitis::ai::RefineDetImp::run

vitis::ai::ConfigurableDpuTaskImp::setInputImageBGR

vitis::ai::ConfigurableDpuTaskImp::run

vitis::ai::DpuTaskImp::run
xir::XrtCu::run

subgraph_Elt3

subgraph_Elt3

SortingThread::run

GuiThread::run

© Copyright 2020 Xilinx

Baseline Application Profiling

30

Baseline application runs at 10.2FPS

 DecodeThread takes 101ms/frame, i.e., 10FPS

 DPU core takes 110ms/frame, i.e., 9FPS for single core and 18FPS for dual cores

Pre-processing on ARM Baseline model on DPU

Thread name Decode DPU SORT GUI

Parallel Thread Num 1 3 1 1

Thread Latency(ms) 101 305 102 102

DPU execution time: 112ms

Decode Thread latency 101ms

CVT and Resize execution

34+30+30=94ms

DPU Thread latency 305ms

root@xilinx-zcu104-2020_1:~# vaitrace -c cfg.json

./usb_input_multi_threads_refinedet_drm refinedet_baseline 0 -t 3
Setting env

INFO:root:VART will run xmodel in [NORMAL] mode

……
INFO:root:Generating VTF

INFO:root:Overall FPS 10.20

© Copyright 2020 Xilinx

Baseline Application Bottleneck

31

Profile result

 Camera is capable of generating data frames at 30FPS

 DecodeThread is only capable of processing frames at 10FPS

 DPUs are only capable of inferencing baseline model at 20FPS

Bottlenecks

 DecodeThread has to be faster than 30FPS

 Optimize software code efficiency – cannot get 3x performance boost

 Accelerate by programming logic – promising

 DPU inference performance has to be faster than 30FPS too

 Increase DPU core computation ablity – not feasible, already using largest core

 Reduce network computation amount – feasible way with Vitis AI

© Copyright 2020 Xilinx

Vitis AI Optimizer

32

Vitis AI optimizer (vai_p) is capable of reducing redundant connections and the

overall operations of networks in iterative way
 Automatically analysis and prune the network models to desired sparsity

 Significantly reduce the OPs and parameters of networks without losing much accuracy

Five functions to optimize model

 ana – run sensitivity analysis

 prune – prune the network according to config

 finetune – finetune the network to recovery accuracy

 transform – transform the pruned model to regular model

 stat – get flops and the number of parameters of a model

ana transformprune

Analyze

Prune

finetune

prune more?

Origin model

pruned model

Y

N

Transform

© Copyright 2020 Xilinx

ML Acceleration by Vitis AI Optimizer

33

* Latency is measured with single thread

** Throughput is measured on ZCU104 dual B4096 cores

*** Optimized models are also release in model zoo

The computation amount of RefineDet could be efficiently reduced by

optimizer

 Latency is reduced and maximum throughput is increased

 Use 80% pruning ratio model could meet our target with big margin (76FPS vs 30FPS)

Model Pruning Ratio Operation (GOP) Latency (ms)* Throughput (FPS)**

RefineDet - 123 115 18

80% 25 31 76

92% 10 16 154

96% 5 12 228

© Copyright 2020 Xilinx

ML Enhanced Application Profiling

34

ML enhanced application runs at 11.23FPS

 DPU takes 30ms/frame and is mostly idle according to profiling result – not bottleneck anymore!

 DecodeThread takes 91ms/frame, i.e., 11FPS – let’s boost it!

Pre-processing on ARM Pruned model on DPU

Thread name Decode DPU SORT GUI

Parallel Thread Num 1 3 1 1

Thread Latency(ms) 89 270 91 91

DPU execution time: 29ms

Decode Thread latency 91ms

CVT and Resize execution

32+26+26=84ms

DPU Thread latency 270ms

root@xilinx-zcu104-2020_1:~# vaitrace -c cfg.json

./usb_input_multi_threads_refinedet_drm refinedet_pruned_0_8 0 -t 3
Setting env

INFO:root:VART will run xmodel in [NORMAL] mode

……
INFO:root:Generating VTF

INFO:root:Overall FPS 11.23

© Copyright 2020 Xilinx

HLS Kernel on PL Vitis AI Library on DPU

Final Application
ML Enhancement plus HLS Pre-processor Kernel

 In the final implementation, HLS kernel will be used for image processing and will run on the

programming logic

 ML inference will still run on DPU with very small portion of Vitis AI library process on the ARM (mean

value subtraction in this case)

35

Camera BGR frame

2304x1296, UVYV 2304x1296, BGR
Queue

Queue

480x360, BGR

1920x1080, BGR

RefinetDet

Detection

BBox

Overlay
Display

Frame@1080p

With bounding box

ARM processor

VitisAI library/DPU

HLS Kernel

© Copyright 2020 Xilinx

Pre-processor by HLS

36

The pre-processor kernel is implemented based on Vitis Vision library pre-built

functions

 https://github.com/Xilinx/Vitis_Libraries/tree/master/vision

 array2xfMat

 uyvy2bgr

 resize

 xfMat2array

It’s straightforward to convert OpenCV function into PL accelerated xfOpenCV

function

https://github.com/Xilinx/Vitis_Libraries/tree/master/vision

© Copyright 2020 Xilinx

Kernel Design Optimization

Each FPGA kernel represents a single thread, so we leverage parallelism

within that thread

>> 37

READ

clk
COMPUTE WRITE

READ COMPUTE WRITE

loop latency = 6

throughput = 1
READ COMPUTE WRITE

READ COMPUTE WRITE

void F (...) {
...
add: for (i=0;i<=3;i++) {
b = a[i] + b;

...

Default: 4 cycles

Unroll: 1 cycle

0 1 2 3
clk

0
1
2
3

clk

Pipelining Loop Unrolling

D

C

B

A

Dataflow Streaming

© Copyright 2020 Xilinx

D

C

Kernel Design Optimization

Without Streaming

With Streaming

>> 38

A B C D

Latency = A + B + C + D + 8 * DDR Latency

B

A

Latency = ~A + 2 * DDR Latency

And lower resource utilization, too!

© Copyright 2020 Xilinx

HLS Kernel Definition

 image_in: The data from USB camera

 image_out: The resized image output for ML

 Image_out_full: The 1920x1080 image output for display

 Width_in: The input width of the usb camera

 Height_in: The input height of the usb camera

 Width_out: the width of the resized image

 Height_out: the height of the resized image

39

© Copyright 2020 Xilinx

Kernel Implementation

40

Implement preprocess kernel based on Vision library building blocks

𝑌0 𝑈0 𝑌1 𝑉0 𝑌2 𝑈1 𝑌3 𝑉1 𝑌4 𝑈2 𝑌5 𝑉2

𝑅0𝐺0𝐵0 𝑅1𝐺1𝐵1 𝑅2𝐺2𝐵2 𝑅3𝐺3𝐵3

𝑅0 𝑅1 𝑅2 𝑅3𝐵0 𝐵1 𝐵2 𝐵3 𝐺0 𝐺1 𝐺2 𝐺3

𝑅0 𝑅1 𝑅2 𝑅3𝐵0 𝐵1 𝐵2 𝐵3 𝐺0 𝐺1 𝐺2 𝐺3

𝑅0𝐺0𝐵0 𝑅1𝐺1𝐵1 𝑅2𝐺2𝐵2 𝑅3𝐺3𝐵3

Read

CSC

Split

Parallel

Resize

Write out

For complete design, please refer to Vitis In-Depth Tutorial Machine Learning Introduction Module 7

https://github.com/Xilinx/Vitis-In-Depth-Tutorial/tree/master/Machine_Learning/Introduction/03-Basic/Module_7

© Copyright 2020 Xilinx

SW Function Migration

41

Software migration from OpenCV to HLS kernel is not difficult with OpenCL

API

 Initialize

 Allocate buffer

 Load kernel

 Set parameter

 Move data to kernel

 Execution

 Get data from kennel

© Copyright 2020 Xilinx

Final Design Architecture

42

Vitis AI

Hardware Overlay

DPU B4096 #2DPU B4096 #1Pre-processor

XRT

VART

Vitis AI Library

Pruned ModelsPre-Processing Post-Processing

Application

OpenCL

Image Process Function

© Copyright 2020 Xilinx

HLS Kernel Performance

43

HLS kernel execution information and time can be inspected in Vitis Analyzer

 Average execution time per frame is about 17ms, i.e., 58FPS

 One preprocess kernel is capable of handling camera input in real time

 Part of time will even be idle because of waiting for camera data

© Copyright 2020 Xilinx

Final Application Profiling

44

Final application runs at 26FPS in profiling mode

 DPU core takes 28ms/frame, from profiling result cores are idle in most time – not bottleneck!

 DecodeThread shrinks to 38ms/frame, i.e., 26.3FPS

 Profiling mode slightly affects overall performance

Pre-processing on PL Pruned model on DPU

Thread name Decode DPU SORT GUI

Parallel Thread Num 1 3 1 1

Thread Latency(ms) 38 116 38 42

DPU execution time: 28ms

Decode Thread latency 38ms

Kernel execution 17ms

DPU Thread latency 116ms

root@xilinx-zcu104-2020_1:~# vaitrace -c cfg.json

./usb_input_multi_threads_refinedet_hls_drm refinedet_pruned_0_8 0 -t 3
Setting env

INFO:root:VART will run xmodel in [NORMAL] mode

……
INFO:root:Generating VTF

INFO:root:Overall FPS 26.02

© Copyright 2020 Xilinx

Final Application Performance

45

Final application runs at 30FPS and achieve the target

Pre-processing on PL Pruned model on DPU

root@xilinx-zcu104-2020_1: ./usb_input_multi_threads_refinedet_hls_drm refinedet_pruned_0_8 0 -t 3

Setting env
INFO:root:VART will run xmodel in [NORMAL] mode

……

I1111 05:07:30.497097 3812 guithread.cpp:101] screen [1920 x 1080]; r = [1920 x 1080 from (0, 0)]
I1111 05:07:30.497117 3812 dpdrm.hpp:563] fb_size [1920 x 1080] fb_roi [1920 x 1080 from (0, 0)] image_size [1920 x 1080] image_roi [1920 x 1080 from (0, 0)]

I1111 05:07:30.497143 3812 dpdrm.hpp:569] from = [1920 x 1080]
I1111 05:07:30.497645 3812 dpdrm.hpp:571] to = [1920 x 1080]

I1111 05:07:30.512097 3811 hlsV4l2Capture.cpp:224] OpenCL duration:27

I1111 05:07:30.512209 3811 decodethread.cpp:61] Decode and Resize :31ms
I1111 05:07:30.521747 3808 mythread.cpp:90] thread [DedodeThread-0] is stopped.

I1111 05:07:30.521888 3808 mythread.cpp:90] thread [GUIThread] is stopped.
I1111 05:07:30.521935 3808 mythread.cpp:90] thread [DPU-0] is stopped.

I1111 05:07:30.521953 3808 mythread.cpp:90] thread [DPU-1] is stopped.

I1111 05:07:30.521970 3808 mythread.cpp:90] thread [DPU-2] is stopped.
I1111 05:07:30.521984 3808 mythread.cpp:90] thread [SORT-0] is stopped.

I1111 05:07:30.522648 3812 guithread.cpp:133] Gui duration :27ms
I1111 05:07:30.523404 3815 dputhread.cpp:48] dpu queue size 0

I1111 05:07:30.523440 3815 dputhread.cpp:56] DPU in single thread duration :96ms

I1111 05:07:30.523458 3815 mythread.cpp:68] thread [DPU-2] is ended
I1111 05:07:30.523782 3816 sortthread.cpp:58] Sort thread duration : 2025 ms

I1111 05:07:30.524152 3816 sortthread.cpp:73] thread [SORT-0] frame id 243 sorting queue size 0 FPS: 30.1235
I1111 05:07:30.524201 3816 mythread.cpp:68] thread [SORT-0] is ended

I1111 05:07:30.545967 3811 hlsV4l2Capture.cpp:224] OpenCL duration:28

DONE

© Copyright 2020 Xilinx

Reference

46

https://github.com/Xilinx/Vitis-AI

https://github.com/Xilinx/Vitis_Libraries

https://github.com/Xilinx/Vitis-In-Depth-Tutorial

 Introduction 03-Basic contains full design used in this presentation

https://github.com/Xilinx/Vitis_Embedded_Platform_Source

https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis-In-Depth-Tutorial
https://github.com/Xilinx/Vitis_Embedded_Platform_Source

© Copyright 2020 Xilinx

Summary

47

Vitis provides unified development environment across all platforms and

enables hardware development in a software way

Vitis AI provides whole stack AI inference acceleration solution, including

model optimization, toolchain and high-efficiency DPU processor

Vitis library could help to accelerate pre/post-process components in the

system and boost whole application performance.

© Copyright 2020 Xilinx

Thank You

