
© Copyright 2020 Xilinx

AI Engine Development for
Versal

Olivier TREMOIS, PhD

SW Technical Marketing AI Engine Tools

© Copyright 2020 Xilinx

Adaptable Engines
2X compute density

Programmable I/O
• Any sensor, any interface

• Extendable peripheral set

Intelligent Engines
• AI Compute

• Diverse DSP workloads

DDR Memory
• 2X bandwidth/pin

• Server-class density

Protocol Engines
• Integrated 600G cores

• 4X encrypted bandwidth

PCIe & CCIX
• 2X PCIe & DMA bandwidth

• Cache-coherent interface

to accelerators

Transceivers
• Broad range, 25G →112G

• 58G in mainstream devices

Scalar Engines
• Platform Management

Controller (PMC)

• Edge Compute

Versal Architecture Overview

>> 2

Network-on-Chip
• Guaranteed Bandwidth

• Enables SW Programmability

© Copyright 2020 Xilinx

AI
Engine

M
EM

O
R
Y

AI
Engine

M
EM

O
R
Y

AI
Engine

M
EM

O
R
Y

AI
Engine

M
EM

O
R
Y

AI Engines
Hardened Compute, Memory & Interconnect

>> 3

Terabytes/sec of interface bandwidth to other engines

˃ Direct, massive throughput to adaptable HW engines

˃ Implement core application with AI for “Whole App Acceleration”

SW programmable for any developer

˃ C programmable, compile in minutes

˃ Library-based design for ML framework developers

Huge performance improvements versus UltraScale+

˃ 8x compute density @ 40% lower power

1GHz+ VLIW / SIMD vector processors

˃ Versatile core for ML and other advanced DSP workloads

Massive array of interconnected cores

˃ Instantiate multiple tiles (10s to 100s) for scalable compute

© Copyright 2020 Xilinx

Vitis Philosophy : Platforms and Subsystems

4

 Subsystems form the customer’s differentiating logic: AIE and PL kernels, operating under the supervision of the PS

 Versal platform provides essential infrastructure services (CIPS, NoC, I/Os, OS, Drivers…)

 Platform insulates developers from low-level details; lets them focus on application development (SW, PL or AIE)

Subsystem #1

Subsystem #2

Subsystem #N

PS

Application

AIE

PL

PL

PL

Firmware

Firmware

Firmware

HW

Platform
SW

Platform

PL Fabric + AIE PS

© Copyright 2020 Xilinx

Vitis 2020.2 Flow for Versal

HW Emulation

Vivado HW Build

Timing Closure

Generate Binary (v++ --package)

Vivado

Vitis

RTL Kernels

RTL Verification

AIE Kernels, Graph

AIE Simulation

PL Kernels (HLS)

HLS Cosimulation

SIM Build

SIMAIESim QEMU

SSW

Vitis HW Platform

Vitis SW Platform

Linux + rootfs
PS App

XRT, Graph API

AIE driver

PL and AIE Integration (v++ --link)

Run on Device
Profile

PL (HLS) PL (RTL) PSAIE Platform

Debug

>> 5

© Copyright 2020 Xilinx

Vitis 2020.2 Flow for Versal

6

HW Emulation

Vivado HW Build

Timing Closure

Generate Binary (v++ --package)

Vivado

Vitis

RTL Kernels

RTL Verification

AIE Kernels, Graph

AIE Simulation

PL Kernels (HLS)

HLS Cosimulation

SIM Build

SIMAIESim QEMU

SSW

Vitis HW Platform

Vitis SW Platform

Linux + rootfs
PS App

XRT, Graph API

AIE driver

PL and AIE Integration (v++ --link)

Run on Device
Profile

PL (HLS) PL (RTL) PSAIE Platform

Debug

© Copyright 2020 Xilinx

AI Engine Programming

>> 7

Single Kernel Programming

˃ Create AI Engine kernel programs

˃ The programming model allows you to use:

˃ Various Vector datatypes

˃ AI Engine intrinsics

˃ Window function API, …

˃ Analyze and Debug Kernel code

˃ Compile, Simulate, profile, …

AI Engine Application

˃ Create multi-kernel AI Engine projects

˃ ADF graph based programming

˃ Modular, hierarchical graph definition

˃ Instantiation of AI Engine memories,

Streams, …

˃ Analyze and Debug

˃ Dataflow, Function scheduling, …

b c d

e

fa b c d

e

fa
polarclip feedback equalizer fir_tap_11 scale

fir_tap_7

d e f

b ca

© Copyright 2020 Xilinx

Programming Flow

© Copyright 2020 Xilinx

Kernel Functional and Performance Validation

>> 9

Kernel Development
Single Node Development template

Or your own single Node project

Required for profiling and low-level analysis

Kernel Validation
Simple connection of the graph to the environment

In-context, full AI Engine array access, PL-connection, …

Debug at the kernel level

Single Kernel

Optimization

Code vectorization, vector datatypes

Vector intrinsics, optimized interface, …

© Copyright 2020 Xilinx

AI Engine Kernel Programming Flow

Code restructuring

 Vector data-types

 Function intrinsics

 Memory optimization

Directives (pragmas)

 Loop unrolling

 Software pipelining

Software development framework

 C/C++ verification (Debugger)

 Profiler

 SW-Emulation: functional only

 AIE-Emulation: cycle true

>> 10

Kernel

Vectorization

Matlab/C/C++

Reference

AIE Optimized

C/C++

AIE-Emulation

AIE Compiler

Directives

AIE Assembly

Code

Cycles

Functional

Verification

Performance

Verification

AI Engine Programming: Standard Vector Programming Techniques

© Copyright 2020 Xilinx

Kernel Programming

>> 11

A Kernel is a ‘C/C++’ function using

special IO and Vector data types. It will

be launched automatically by a

scheduler depending on some events

Vector Datatypes

for vectorized

computations

Directives to

help in

scheduling for

performance

C Window API

to access data

AI Engine

intrinsics to

perform

vectorized

computation

Adaptive

Dataflow

Library
#include <adf.h>

void fir_16taps_symm(const unsigned samples, const int32 (&taps_in)[16],

input_window_cint16 * w_input, output_window_cint16 * w_output)

{

v16int16 coeffs;

v32cint16 sbuff = undef_v32cint16();

for (unsigned i = 0; i < 12 ; i++)

coeffs = shft_elem(coeffs, (int16) taps_in[15 - i]);

const unsigned LSIZE = (samples / 4);

for (unsigned i=0; i<LSIZE; i+=2)

chess_loop_range(2,)

chess_prepare_for_pipelining

{

v4cacc48 acc;

sbuff = upd_w(sbuff, 0, window_readincr_v8(w_input));

sbuff = upd_w(sbuff, 1, window_readincr_v8(w_input));

sbuff = upd_w(sbuff, 2, window_read_v8(w_input));

acc = mul4_sym(sbuff , 0 , 0x3210 , 1 , 15 , coeffs, 0, 0x0000, 1);

acc = mac4_sym(acc, sbuff , 4 , 0x3210 , 1 , 11 , coeffs, 4, 0x0000, 1);

window_writeincr(w_output, srs(acc,SRS_SHIFT));

acc = mul4_sym(sbuff , 4 , 0x3210 , 1 , 19 , coeffs, 0, 0x0000, 1);

acc = mac4_sym(acc, sbuff , 8 , 0x3210 , 1 , 15 , coeffs, 4, 0x0000, 1);

window_writeincr(w_output, srs(acc,SRS_SHIFT));

window_decr_v8(w_input,1);

}

}

© Copyright 2020 Xilinx

Graph Development, Validation and optimization

>> 12

Graph Development
Kernel stitching within graph

AI Engine compiler, placer and router

Can include PL-based kernel

Graph Validation
Emulation-SW: complete graph functional simulation

Emulation-AIE: Cycle true graph simulation

Debug at the graph level

Graph

Optimization

I/F optimization

Location constraints, stamp (AI Engine graph map) and repeat

FIFO settings, circuit/packet switch communications, …

© Copyright 2020 Xilinx

Graph Programming

>> 13

Adaptive

Dataflow

Library

AI Engine Application

described as a graph

IOs of the graph

are “ports”

The constructor of the graph

describes all the connections

and some other parameters.

For “Single Kernel programming”

this section is very simple

Single Kernel Based Graph

#include <adf.h>

using namespace adf;

#include "kernels.h"

class myGraph : public graph {

private:

kernel kernel1,kernel2;

public:

input_port in;

input_port NSamples;

input_port Coefficients;

output_port out;

myGraph(){

kernel1 = kernel::create(fir_16taps_symm);

kernel2 = kernel::create(fir_23taps_symm);

connect< window<128> > net0 (in, kernel1.in[2]);

connect< window<128> > net1 (kernel1.out[0],kernel2.in[0]);

connect< window<128> > net2 (kernel2.out[0], out);

connect<parameter> (NSamples, async(kernel1.in[0]));

connect<parameter> (Coefficients, async(kernel1.in[1]));

source(kernel1) = "kernels/Kernel_1.cc";

source(kernel2) = "kernels/Kernel_2.cc";

runtime<ratio>(kernel1) = 0.1;

runtime<ratio>(kernel2) = 0.1;

}

};

© Copyright 2020 Xilinx

Testbench

>> 14

Adaptive

Dataflow

Library

AI Engine Graph

Simulation control

Creation of a virtual platform:

- Input test vector file

- Output vector file

- Connection of the graph

#include <adf.h>

using namespace adf;

#include "kernels.h"

#include "kernels/include.h"

#include "project.h"

kernelOptGraph mygraph;

simulation::platform<1,1> platform("data/input.txt", "data/output.txt");

connect<> net0(platform.src[0], mygraph.in);

connect<> net1(mygraph.out, platform.sink[0]);

int main(void) {

int32 taps[16] = {-100, 200, -300, 400, -500, 600, -700, 800, 800, -700, 600, -500,

400, -300, 200, -100};

mygraph.init();

mygraph.run(4);

mygraph.update(mygraph.samples, uint32(INPUT_SAMPLES));

mygraph.update(mygraph.coefficients, taps, 16);

mygraph.end();

return 0;

}

© Copyright 2020 Xilinx

Vitis Analyzer

© Copyright 2020 Xilinx

Vitis Analyzer introduction

>> 16

Compile Results Analysis:

 Graph

 Mapping

 Memory footprint

 DMAs, Locks, …

Profiling Viewer

Simulation Timeline analysis

Can be used also within Makefile flow

© Copyright 2020 Xilinx

Vitis Analyzer Compilation View

Graph View

 Shows all the kernels defined in the AI Engine graph (AI Engine Array and PL)

 The kernels can be grouped by Tile or Subgraph or no grouping at all

© Copyright 2020 Xilinx

Vitis Analyzer Compilation View

Array View

 Shows the complete AI Engine array and specifies which Tile is used and wall connections

© Copyright 2020 Xilinx

Vitis Analyzer Trace view

The Trace view gives

information on what runs on

each tile (active tiles only) of

the array:

 Core, DMA, Locks and IOs

A Tile is active as soon as

its AI Engine processor, its

local memory or its

interconnect is active

© Copyright 2020 Xilinx

AI Engine Project Creation in Vitis 2020.2

© Copyright 2020 Xilinx

System Project structure in Vitis

>> 21

System
Project

HW Link

AI Engine

Programmable
Logic

Processing
System

Sub-graphs and graphs description

AI Engine kernel source files

PL kernel source files (HLS)

PL kernel source files (packaged RTL)

System configuration file

PS application

OS

AI Engine Drivers

XRT

OpenCL

Baremetal

Linux

© Copyright 2020 Xilinx

Vitis 2020.2 Demo

© Copyright 2020 Xilinx

Example design partitioning

>> 23

DDR

MM2S

(PL DMA)

Weighted

sum

(AI Engine)

PolarClip

HLS

(PL Kernel)

S2MM

(PL DMA)

DDR

Classifier

(AI Engine)

Average

(AI Engine)

Graph

© Copyright 2020 Xilinx

Programmable

Logic

AI Engine

Array

Example design partitioning

>> 24

DDR

MM2S

(PL DMA)

Weighted

sum

(AI Engine)

PolarClip

HLS

(PL Kernel)

S2MM

(PL DMA)

DDR

Classifier

(AI Engine)

Average

(AI Engine)

© Copyright 2020 Xilinx

Vitis 2020.2
Project Creation and AI Engine Simulation

© Copyright 2020 Xilinx

Vitis 2020.2
PL kernel compilation and HW link

© Copyright 2020 Xilinx

Vitis 2020.2
PS app compilation and HW Emulation

© Copyright 2020 Xilinx

Vitis 2020.2
HW Implementation

© Copyright 2020 Xilinx

Summary

Vitis is a unified tool that is used throughout the AI Engine development flow

AI Engine development is a 2-stage process

 Single kernel

 Graph development

Vitis handles all Versal ACAP domains

© Copyright 2020 Xilinx

Thank You

