An Introduction to Vitis HLS

XILINX.

High-Level Synthesis (HLS) Flows

Technical Overview + Demo Examples

Resources

>> 2

"L C/C++
Vl t | S H L S OpenCL
Compiler directives

* Arbitrary precision
* Math.h

Abstracted C-based Design Entry . Streams

l * Vectors
Design steps

- csmuatin | High Level Synthesis

Higher Productivity !

* Csynthesis

Concise code

* Co-simulation

4

Fast C simulation R
IP or

Kernel
Automated Simulation of Generated RTL J

FPGA, ACAP

Optimized Libraries

int main () {
// test vectors

int foo() {
// foo to become hw

Surveillance, Al
Classification

Recognition

Aerospace and Defense
Radar, Sonar
Signals Intelligence

‘;ﬁ;\\ﬁiﬁi‘\, !/ i‘ Industrial, Scientific, Me
mill- /o Ultrasound systems

- g Motor controllers

Automotive
Infotainment
Driver assistance/Al

Test & Measurement

Communications instru
Semiconductor ATE

© Copyright 2020 Xilinx

Robotics
» Drones
» Micro-controller, Al

Communications
» LTEMIMOreceiver

» Advanced wireless
antennapositioning

Audio, Video, Broad
» 3D cameras
> Videotransport

Consumer
» 3D television
> eReaders

Computing & Stora
> High performancec
» Database accelerati

& XILINX.

'HLS In Vitis Flow

In Vitis Kernel code

Environment

C/ CHt Accelerated
OpenCL </> | Libraries I

Custom
Accelerators

Domain-specific I

HLS compiles C-based Kernels

v v++ performs all the compiles and links IVitIiS Ckompiller v+t
inks kernels to
v' HLS is automatically invoked the platform...
v" No necessary direct interaction with HLS & ; ; G ; ; G ;

v HLS reports imported in Vitis Analyzer Application / Host

W XILINX

v Full application can be C-based . VITIS

Runtime

© Copyright 2020 Xilinx 8 X”_INX

' HLS in Vivado Flow

Vitis HLS

— Compiler
C / e < / > Directives

HLS exports RTL IP...
._| Accelerated ‘

Libraries

HLS exports an IP

v User runs HLS directly compatible with
IP Integrator

v Typically block assembly done in IPI s . .)))))
v v v v v v v v
v Design entry is C/C++ — o ————

Vivado IP Integrator (IPI)

2 D pro i 7.0 g =
. . . 33 oo ma, * ; ER7_{0_ai_periph)
v' Can invoke Vivado waveform viewer a ey -
S I = = L | _sameo
= [aQammel—dom)
. o e o
@
£ S Dwenign. | 8 Sonals | [l Sear -,;g DOR
e = “.’- processng_system?_0 N | FIXED IO
==k R . T LS e : |_D
M ~ L
o
FESETO No—

-8 © Copyright 2020 Xilinx 8 X”_INX

High-Level Synthesis (HLS) Flows

Technical Overview + Demo Examples

Resources

>>9

'Automatic Interface and Control Logic

> Simple C code quickly become a kerneloran IP...

>>10

void f(int in[4], int out[4]) {
int a,b,c,x,y;

=0; i< 4; i++) {

x = in[i]; y = a*x + b + c; out[i] = y;

for(int i

}

Adapter

HLS automatically
adds registers to
meet Fmax goal.

Block-level
|/Os

Controllogic—- FSM

© Copyright 2020 Xilinx

Adapter
- AXI
- FIFO

- RAM
+

Block-level
|/Os

& XILINX.

'Design Space Exploration via Pragmas

> Pragmas change the circuit topology...

>> 11

void f(int in[4], int &y, int a[4], int b, int c¢) {
#pragma HLS ARRAY_PARTITION variable=in dim=1 complete
#pragma HLS ARRAY_PARTITION variable=a dim=1 complete
#ipragma HLS PIPELINE

for(int i = 0; 1 < 4; i++)
y += a[i] * in[i] + b + c;

© Copyright 2020 Xilinx

& XILINX.

'Task Parallelism with HLS

time

I g o

“diamond”
shape connectivity.
3 iterations.

© Copyright 2020 Xilinx

& XILINX.

Default versus ping-pong buffers

- - By default...
- - As A produces its buffer, B and C wait...
- - Then B and C consume and A waits...

- - With ping-pong buffers...
- A produces in one buffer, B and C read the other.
- - Next invocation, buffers switch roles: tasks can work continuously

The dataflow pragma in HLS automates memory expansion to enable task parallelism

© Copyright 2020 Xilinx 8 X”_INX

» Demo #1 — Task Parallelism

w14 © Copyright 2020 Xilinx 8 X”_INX

'Vectorized Data Types...

// Vectorization means that the compiler detects that
// independent instructions can be executed as SIMD instructions.

// So, something like this...
for(i=0; i<N; i++){

a[i] = a[i] + b[i];
}

// ... becomes "vectorized" as... (using vector notation)
for (i=0; i<(N-N%VF); i+=VF){

a[i:i+VF] = a[i:i+VF] + b[i:i+VF];
}

// 1 operation that can be done on VF elements of the array

// at the same time and does this N/VF times instead of doing
// the single operation N times...

== 15 © Copyright 2020 Xilinx 8 X”_INX

'Vectorized Data Types in Vitis HLS

> Vitis HLS supportsthe C++14 vector_sizeattribute
>> Simply using C++...

// vector size specifies size in bytes
typedef float floatlé attribute (vector size(64));

Custom vector type float16 based on C++ attribute

> ... and also supports arbitrary precision types viahls_vector.h

>> Examples
#include "hls vector.h"
using floatlé = hls::vector<float, 16>;

Same as above using hls::vector

L#include "hls vector.h" 1

using quad = hls::vector<ap_ int<18>, 4>;

Vector of four 18-bit signed variables

== 16 © Copyright 2020 Xilinx 8 X”_INX

'Vectorized Data Types — Operations

> Initialization

hls::vector<int, 4> Xx; // uninitialized

hls::vector<int, 4> y = 10; // scalar initialized
hls::vector<int, 4> z = {0, 1, 2, 3}; // initializer list (must have 4 elements)

> Access

myvec[i] = ...; // reference to an element

. = myvec[i]; // value of an element

> Recommendations

>> Use hls::vector<T, N> with N as a power of 2 for a better alignment that guarantees smaller
initiation interval (11)

>> Use the _ attribute_ ((no_ctor)) for better Il when using dataflow

== 17 © Copyright 2020 Xilinx 8 X”_INX

'Optimizing Interfaces

HLS Kernel with m_axi External Connectivity (e.g. DDR memory)

Algorithm ~ D e
J RS e | Interconnect Controller

M-AXI Adapter

#pragma HLS INTERFACE m_axi ...

5to 7 cycles ~30 cycles 9 to 14 cycles

> Efficient Pipeline
>> Adapt the latency parameter of the interface for efficiency

> Loop Bursts
>> Segmented into smaller bursts by the adapter (and that’s okay!)
>> Adapter will pipeline for you (independent state machine!)

- 18 © Copyright 2020 Xilinx 8 X”_INX

» Demo #2 — Vector types and AXI Interfaces

== 19 © Copyright 2020 Xilinx 8 X”_INX

High-Level Synthesis (HLS) Flows

Technical Overview + Demo Examples

Resources

>> 20

ReS ources — H L S XILINX beveimers support N User Guide |

Vitis Unified Software Development Platform 2020.1 Documentation

vitis A D Flow D Vitis Software Development Flow D Vitis HLS S
Search Q | Home / Vitis HL Jsing Vitis HLS / Introduction to Vitis HLS A =
T 5 g On this page:
> Viis HLS Introduction to Vitis HLS BsE GG
> Using Vitis HLS Synthesis
« Introduction to Vitis HLS The Vitis™ HLS tool has been developed to simplify the use of C/C++ functions for Scheduling and
T M L d P D F G - d « Launching Vitis HLS implementation as hardware kernels in the Vitis application acceleration development flow; and Binding Example
> I I a n U S e r u I e S ¢ . to use C/C++ code for developing RTL IP for FPGA designs. Extracting Control
= Vitis HLS Process Overview Logic and
* Creating a New Vitis HLS In the Vitis application acceleration flow the Vitis HLS tool automates much of the code Implementing 1/0

Project . . . < e 5 o
TES modifications required to implement and optimize the C/C++ code in programmable logic, and Ports Example

Verifying Code with C . X 2 S Performance Metrics
erilying Lodewrh: achieve low latency and high throughput. The inference of required pragmas to produce the
Simulation Example

.
> B aS I C eX al I l p | e S Synthesizing the Code right interface for your function arguments, and to pipeline loops and functions within your code Tutorials and Examples

’ is the foundation of Vitis HLS in the application acceleration flow.
Analyzing the Results of

3vn sis i . 5 . = B |
Synthesis Vitis HLS also supports customization of your code to implement different interface standards,

Optimizing the HLS Project or specific optimizations to achieve your design objectives.
C/RTL Co-Simulation in Vitis

>> Github examples accessible from Vitis HLS

> Tutorials and complete examples XILINX Forum

Acceleration T

Discussions € Vitis Acceleration, SDAccel, SDSoC
< High-Level Synthesis (HLS)
» Al and Vitis Al
AXI Tutorials ‘
‘ 0 9 O 0 Q Alveo™ Accelerator Cards t

>> Github libraries: Vitis Libraries

by wmN on 09-22-2020 03:18 AM
. m . = » B Embedded Software Development
.
>> V/itis examples_ Vitis Accel Examples Vi Bosiaiis T SRl A A PR
by wms on 06-15-2020 08:21 AM * Latest post on 09-17-2020 47 O2 » B About Our Community
10:51 PM by [dr al r B E
Vivado HLS csin error
@ o Oo Top Kudoed Posts
> O r u I I I S ¥ by Amr_Abd on 09-28-2020 02:01 PM
SUBJECT KUDOS
|
@ Basic I/0 Concepts Re: Missing constructor for stre a2
\ by [} shagarwal on 09-26-2020 01:36 AM * Latest post on 09-30-2020 3o (o] ams with non-zero ...
. ag = 8 g
>> Monitored by Xilinx support staff s
Re: LUT as Distributed RAM over 2]
= -utilized in Top Le... o
AXI4-Stream Video Port stuck with TREADY low
by & chevalier on 05-19-2016 06:16 PM * Latest post on 09-30-2020 Go 7
05:03 AM by [thisisbabac Re: Create IP AXI4-Lite G2
vitis_hls breaks stream depth pr
m ROHC on Vivado HLS 62
2 do ©Oo agma -
8 oy fl; on 09-29-2020 08:53 AM

-2l © Copyright 2020 Xilinx 8 X”_INX

https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis_Accel_Examples

Vitis HLS used both in Vitis and Vivado

C based entry boosts productivity

Get started with examples and tutorials

>> 22

