
© Copyright 2020 Xilinx

An Introduction to Vitis HLS

© Copyright 2020 Xilinx

Agenda

High-Level Synthesis (HLS) Flows

Technical Overview + Demo Examples

Resources

>> 2

© Copyright 2020 Xilinx

Design steps

• C simulation

• C synthesis

• Co-simulation

˃ Abstracted C-based Design Entry

˃ Higher Productivity !

Concise code

Fast C simulation

Automated Simulation of Generated RTL

Optimized Libraries

Vitis HLS

High Level Synthesis

IP or
Kernel

FPGA, ACAP

• Arbitrary precision

• Math.h

• Streams

• Vectors

Compiler directives

C/C++

OpenCL

© Copyright 2020 Xilinx

© Copyright 2020 Xilinx

int main () {
// test vectors
...
int foo() {
// foo to become hw
...
}
...
}

© Copyright 2020 Xilinx

Applications for High-Level Synthesis

Audio, Video, Broadcast
3D cameras
Video transport

Consumer
3D television
eReaders

Communications

LTE MIMO receiver

Advanced wireless
antenna positioning

Automotive
Infotainment
Driver assistance / AI

Aerospace and Defense
Radar, Sonar

Signals Intelligence

Test & Measurement
Communications instruments
Semiconductor ATE

Industrial, Scientific, Medical
Ultrasound systems

Motor controllers

Computing & Storage
High performance computing
Database acceleration

Surveillance, AI
Classification

Recognition

Robotics

Drones

Micro-controller, AI

© Copyright 2020 Xilinx

HLS in Vitis Flow

Kernel

Runtime

Application / Host

Vitis compiler v++
links kernels to
the platform…

Custom
Accelerators

Accelerated
Libraries

Domain-specific
Environment

C/C++
OpenCL

I n V i t i s Kernel code

HLS compiles C-based Kernels

✓ v++ performs all the compiles and links

✓ HLS is automatically invoked

✓ No necessary direct interaction with HLS

✓ HLS reports imported in Vitis Analyzer

✓ Full application can be C-based

© Copyright 2020 Xilinx
>> 8

HLS in Vivado Flow

HLS exports an IP

compatible with

IP Integrator

Accelerated
Libraries

Compiler
Directives

C/C++

V i t i s HL S

Vivado IP Integrator (IPI)

HLS exports RTL IP…

✓ User runs HLS directly

✓ Typically block assembly done in IPI

✓ Design entry is C/C++

✓ Can invoke Vivado waveform viewer

© Copyright 2020 Xilinx

Agenda

High-Level Synthesis (HLS) Flows

Technical Overview + Demo Examples

Resources

>> 9

© Copyright 2020 Xilinx

Automatic Interface and Control Logic

˃ Simple C code quickly become a kernel or an IP…

>> 10

f(int in[20], int out[20]) {

int a,b,c,x,y;

for(int i = 0; i < 20; i++) {

x = in[i]; y = a*x + b + c; out[i] = y;}

void f(int in[4], int out[4]) {

int a,b,c,x,y;

for(int i = 0; i < 4; i++) {

x = in[i]; y = a*x + b + c; out[i] = y;

}

a

x

b
c

y

v

v

v

v

v

v

v

Adapter
- AXI
- FIFO
- RAM

+
Block-level

I/Os

Adapter
- AXI
- FIFO
- RAM

+
Block-level

I/Os
Control logic – FSM

i

v v v

HLS automatically

adds registers to

meet Fmax goal.

© Copyright 2020 Xilinx

Design Space Exploration via Pragmas

˃ Pragmas change the circuit topology…

>> 11

y

v v v v v v v v v v v v v v v v

v

a[0] b c b c b c b c
in[0] in[1] in[2] in[3]

void f(int in[4], int &y, int a[4], int b, int c) {
#pragma HLS ARRAY_PARTITION variable=in dim=1 complete
#pragma HLS ARRAY_PARTITION variable=a dim=1 complete
#pragma HLS PIPELINE

for(int i = 0; i < 4; i++)
y += a[i] * in[i] + b + c;

}

a[1] a[2] a[3]

© Copyright 2020 Xilinx

A
C

B

time

D A
C

B
D

“diamond”

shape connectivity.

3 iterations.

A
C

B
D

Task Parallelism with HLS

© Copyright 2020 Xilinx

A
C

B

A
C

B

By default…

As A produces its buffer, B and C wait...

Then B and C consume and A waits…

With ping-pong buffers…

A produces in one buffer, B and C read the other.

Next invocation, buffers switch roles: tasks can work continuously

Default versus ping-pong buffers

The dataflow pragma in HLS automates memory expansion to enable task parallelism

© Copyright 2020 Xilinx
>> 14

Demo #1 – Task Parallelism

© Copyright 2020 Xilinx

Vectorized Data Types…

>> 15

// Vectorization means that the compiler detects that
// independent instructions can be executed as SIMD instructions.
// So, something like this...

for(i=0; i<N; i++){

a[i] = a[i] + b[i];
}
// ... becomes "vectorized" as... (using vector notation)

for (i=0; i<(N-N%VF); i+=VF){

a[i:i+VF] = a[i:i+VF] + b[i:i+VF];

}

// 1 operation that can be done on VF elements of the array

// at the same time and does this N/VF times instead of doing
// the single operation N times...

© Copyright 2020 Xilinx

Vectorized Data Types in Vitis HLS

˃ Vitis HLS supports the C++14 vector_sizeattribute

Simply using C++…

>> 16

// vector_size specifies size in bytes
typedef float float16 __attribute__(vector_size(64));

˃ … and also supports arbitrary precision types via hls_vector.h

Examples

#include "hls_vector.h"
using float16 = hls::vector<float, 16>;

Custom vector type float16 based on C++ attribute

Same as above using hls::vector

#include "hls_vector.h"
using quad = hls::vector<ap_int<18>, 4>;

Vector of four 18-bit signed variables

© Copyright 2020 Xilinx

Vectorized Data Types – Operations

>> 17

˃ Initialization

hls::vector<int, 4> x; // uninitialized
hls::vector<int, 4> y = 10; // scalar initialized
hls::vector<int, 4> z = {0, 1, 2, 3}; // initializer list (must have 4 elements)

˃ Access

myvec[i] = ...; // reference to an element
... = myvec[i]; // value of an element

˃ Recommendations

Use hls::vector<T, N> with N as a power of 2 for a better alignment that guarantees smaller

initiation interval (II)

Use the __attribute__((no_ctor)) for better II when using dataflow

© Copyright 2020 Xilinx

Optimizing Interfaces

>> 18

˃ Efficient Pipeline

Adapt the latency parameter of the interface for efficiency

˃ Loop Bursts

Segmented into smaller bursts by the adapter (and that’s okay!)

Adapter will pipeline for you (independent state machine!)

M-AXI Adapter

AXI

Interconnect

Memory

Controller
DDR

5 to 7 cycles 9 to 14 cycles~30 cycles

#pragma HLS INTERFACE m_axi …

Algorithm
address

data

HLS Kernel with m_axi External Connectivity (e.g. DDR memory)

© Copyright 2020 Xilinx
>> 19

Demo #2 – Vector types and AXI Interfaces

© Copyright 2020 Xilinx

Agenda

High-Level Synthesis (HLS) Flows

Technical Overview + Demo Examples

Resources

>> 20

© Copyright 2020 Xilinx

Resources – HLS

˃ HTML and PDF User Guides

˃ Basic examples

Github examples accessible from Vitis HLS

˃ Tutorials and complete examples

Github libraries: Vitis_Libraries

Vitis examples: Vitis_Accel_Examples

˃ Forums

Monitored by Xilinx support staff

>> 21

User Guide

Forum

https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis_Accel_Examples

© Copyright 2020 Xilinx

Summary

Vitis HLS used both in Vitis and Vivado

C based entry boosts productivity

Get started with examples and tutorials

>> 22

