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'HLS In Vitis Flow
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' HLS in Vivado Flow
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'Automatic Interface and Control Logic

> Simple C code quickly become a kerneloran IP...
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void f(int in[4], int out[4]) {
int a,b,c,x,y;

=0; i< 4; i++) {

x = in[i]; y = a*x + b + c; out[i] = y;

for(int i

}

Adapter

HLS automatically
adds registers to
meet Fmax goal.

Block-level
|/Os

Controllogic—- FSM
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'Design Space Exploration via Pragmas

> Pragmas change the circuit topology...
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void f(int in[4], int &y, int a[4], int b, int c¢) {
#pragma HLS ARRAY_PARTITION variable=in dim=1 complete
#pragma HLS ARRAY_PARTITION variable=a dim=1 complete
#ipragma HLS PIPELINE

for(int i = 0; 1 < 4; i++)
y += a[i] * in[i] + b + c;
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'Task Parallelism with HLS

time
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Default versus ping-pong buffers

- - By default...
- - As A produces its buffer, B and C wait...
- - Then B and C consume and A waits...

- - With ping-pong buffers...
- A produces in one buffer, B and C read the other.
- - Next invocation, buffers switch roles: tasks can work continuously

The dataflow pragma in HLS automates memory expansion to enable task parallelism
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» Demo #1 — Task Parallelism
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'Vectorized Data Types...

// Vectorization means that the compiler detects that
// independent instructions can be executed as SIMD instructions.

// So, something like this...
for(i=0; i<N; i++){

a[i] = a[i] + b[i];
}

// ... becomes "vectorized" as... (using vector notation)
for (i=0; i<(N-N%VF); i+=VF){

a[i:i+VF] = a[i:i+VF] + b[i:i+VF];
}

// 1 operation that can be done on VF elements of the array

// at the same time and does this N/VF times instead of doing
// the single operation N times...
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'Vectorized Data Types in Vitis HLS

> Vitis HLS supportsthe C++14 vector_sizeattribute
>> Simply using C++...

// vector size specifies size in bytes
typedef float floatlé attribute (vector size(64));

Custom vector type float16 based on C++ attribute

> ... and also supports arbitrary precision types viahls_vector.h

>> Examples
#include "hls vector.h"
using floatlé = hls::vector<float, 16>;

Same as above using hls::vector

L#include "hls vector.h" 1

using quad = hls::vector<ap_ int<18>, 4>;

Vector of four 18-bit signed variables
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'Vectorized Data Types — Operations

> Initialization

hls::vector<int, 4> Xx; // uninitialized

hls::vector<int, 4> y = 10; // scalar initialized
hls::vector<int, 4> z = {0, 1, 2, 3}; // initializer list (must have 4 elements)

> Access

myvec[i] = ...; // reference to an element

. = myvec[i]; // value of an element

> Recommendations

>> Use hls::vector<T, N> with N as a power of 2 for a better alignment that guarantees smaller
initiation interval (11)

>> Use the _ attribute_ ((no_ctor)) for better Il when using dataflow
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'Optimizing Interfaces

HLS Kernel with m_axi External Connectivity (e.g. DDR memory)

Algorithm ~ D e
J RS e | Interconnect Controller

M-AXI Adapter

#pragma HLS INTERFACE m_axi ...

5to 7 cycles ~30 cycles 9 to 14 cycles

> Efficient Pipeline
>> Adapt the latency parameter of the interface for efficiency

> Loop Bursts
>> Segmented into smaller bursts by the adapter (and that’s okay!)
>> Adapter will pipeline for you (independent state machine!)
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» Demo #2 — Vector types and AXI Interfaces
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https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis_Accel_Examples

Vitis HLS used both in Vitis and Vivado

C based entry boosts productivity

Get started with examples and tutorials
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