G-Pulse ADCU Solution

系统经理：石丰略
About G-Pulse

Intron Tech (HKSEx#: 1760.HK)

- 900+ Employee
- 600+ Engineer
- 200+ Master
- 1000+ Customer
- 15+ Branch

20-years experience in Automotive electronics

- > 10 Million Automotive controller & sensor
- > 6000m² Engineering Lab
- > 65% R&D Engineer
- > 160 Patent & Copy right
Solutions for Automated Vehicle

Central Gateway

- CAN
- CAN/ETH
- CAN/ETH
- ETH

Body & Comfort
- Powertrain Domain
 - E-Motor
 - BMS
 - DCDC
 - Others

Chassis Domain
- Steering
- Braking
- ABS
- Others

ADAS/AD Domain
- Front Radar
- Front Camera
- Corner Radar
- Others

Infotainment System

Telematics
- ETH

CAN

CAN/ETH

ETH

Infotainment System

Central Gateway

Telematics
Our focus in ADCU development

- Functional Safety & Cyber Security
- Mass Producible computing platform
 - HW platform
 - SW platform (AUTOSAR, RTOS, Hypervisor, MW......)
- Test & Validation
- Continuous Integration & Continuous Delivery
Typical AD Function Topology

Perception Layer
- GNSS*
- IMU*
- Vehicle Sensors*
- Radar*, USS, etc…
- Cameras

Fusion Layer
- Positioning
- Vehicle State Estimation
- Object Detection & Barrier Detection

Scene Understanding

Behavior & Motion Planning
- Behavior Planning
- Path Planning
- Motion Planning

Vehicle Dynamic
- Vehicle Control & Stabilization
- Steering
- Braking
- Accelerating

ASIL-QM~
ASIL-B ~
ASIL-B~D
ASIL-D
CAELUS Architecture for ADCU

Perception Layer
- GNSS*
- IMU*
- Vehicle Sensors*
- Radar*, USS, etc…
- Cameras

Fusion Layer
- Positioning
- Vehicle State Estimation
- Object Detection & Barrier Detection

Scene Understanding

Behavior & Motion Planning
- Behavior Planning
- Path Planning
- Motion Planning

Vehicle Dynamic
- Vehicle Control & Stabilization
- Steering
- Braking
- Accelerating

Perception Host
- FGPA / ASIC / GPU (ASIL-QM)

Internal backbone connection

Application Host
- AUTOSAR
- uController (ASIL-D)
MPSoC (ZUx) series ADCU

TC297+ZU2

TC397+ZU5 (9 DRAM Ver.)

TC397+ZU11 9 (9 DRAM Ver.)
MPSoC-based ADCU solution
Recommended SW architecture

Infineon AURIX
- Safety Dynamic Control
 - Vehicle
 - Classic AUTOSAR
 - AUTOSAR Runtime Environment

Xilinx MPSoC UltraScale+
- Perception
- Fusion
- Path Planning
- Other App.

G-Pulse Middleware
- Wind River Linux
- Wind River VxWorks
- Helix Virtualization Platform

FPGA
- Expandable ETH-based architecture
- Hypervisor: Decouple S/W from each other

APU
- ~ ASIL-B Performance ARM core to support complex algorithm

RPU
- RTE: to support Safety on ARM

FPGA
- Decouple S/W from each other

APU
- Deep/machine learning

RPU
- Parallel computing & Deep/machine learning

Most vehicle control APP could be seamlessly migrated from AURIX

AUTOSAR architecture: Decouple S/W from H/W

AURIX: Safety + Security
Open ADCU for Developer User

A ready-to-use package for ADAS/AD developer.
Open ADCU for Developer User

A validated ECU hardware, which could be used as prototype or A-sample.

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-40°C ~ 85°C</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>259132.540</td>
<td>mm</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>≤0.9kg</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>13.5V (Typ)</td>
<td>Voltage range: 9V ~ 16V</td>
</tr>
<tr>
<td>Communication Interface</td>
<td>CAN1 LIN4 100 Base T1*1</td>
<td></td>
</tr>
<tr>
<td>Sensor interface</td>
<td>CAN5 LIN12</td>
<td></td>
</tr>
<tr>
<td>Debug interface</td>
<td>JTAG2, UART2, 1000 Base T*2</td>
<td></td>
</tr>
<tr>
<td>MCU</td>
<td>TC397</td>
<td></td>
</tr>
<tr>
<td>SOC</td>
<td>XAZU5EV</td>
<td></td>
</tr>
<tr>
<td>Video input</td>
<td>MAX9286, MAX9276</td>
<td>HFM, FAKRA</td>
</tr>
<tr>
<td>Video output</td>
<td>MAX9295</td>
<td>HSD</td>
</tr>
</tbody>
</table>
Open ADCU for Developer User

A structured SW platform, to enable rapid application/algorithm development.

TC397
Open ADCU for Developer User

An OPEN platform, to foster customer development.

<table>
<thead>
<tr>
<th>Artefact list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hardware Datasheet</td>
</tr>
<tr>
<td>2 Hardware User Manuel</td>
</tr>
<tr>
<td>3 Hardware Diagram</td>
</tr>
<tr>
<td>4 Hardware Schematic drawing</td>
</tr>
<tr>
<td>5 Hardware Test Report</td>
</tr>
<tr>
<td>6 Software architect</td>
</tr>
<tr>
<td>7 Software tool-chain application note</td>
</tr>
<tr>
<td>8 Software User Manual</td>
</tr>
<tr>
<td>9 Software Source Code (AURIX + MPSoC)</td>
</tr>
<tr>
<td>10 Application note for MIPI</td>
</tr>
<tr>
<td>11 PC Client</td>
</tr>
<tr>
<td>Etc…</td>
</tr>
</tbody>
</table>
Application Scenarios - I

<table>
<thead>
<tr>
<th>Host</th>
<th>Development & Evaluation</th>
</tr>
</thead>
</table>
| Safety Host (AURIX) | ✓ AUTOSAR Platform
| | ✓ Vehicle dynamic control |
| Fusion Host (Cortex-A53) | ✓ RTOS, eg. Wind River VxWorks
| | ✓ Hypervisor, eg. Wind River HVP
| | ✓ Sensor Fusion (front radar + front camera)
| | ✓ ADAS application, eg. AEB, ACC, FCW, etc… |
| Perception Host (FPGA) | ✓ Front camera perception algorithm |
Application Scenarios - II

<table>
<thead>
<tr>
<th>Host</th>
<th>Development & Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Host (AURIX)</td>
<td>✓ AUTOSAR Platform evaluation</td>
</tr>
<tr>
<td></td>
<td>✓ Vehicle dynamic control evaluation</td>
</tr>
<tr>
<td></td>
<td>✓ etc…</td>
</tr>
<tr>
<td>Fusion Host (Cortex-A53)</td>
<td>✓ RTOS, eg. Wind River VxWorks</td>
</tr>
<tr>
<td></td>
<td>✓ Hypervisor, eg. Wind River HVP</td>
</tr>
<tr>
<td></td>
<td>✓ (Multiple) Sensor Fusion algorithm</td>
</tr>
<tr>
<td></td>
<td>✓ Path planning algorithm</td>
</tr>
<tr>
<td></td>
<td>✓ Other algorithm & complex application</td>
</tr>
<tr>
<td></td>
<td>✓ etc…</td>
</tr>
<tr>
<td>Perception Host (FPGA)</td>
<td>✓ Surround view camera perception</td>
</tr>
</tbody>
</table>

![Diagram of ADCU with connectivity to Vehicle Network (CAN/Ethernet)]
Application Scenarios - III

<table>
<thead>
<tr>
<th>Host</th>
<th>Development & Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Host (AURIX)</td>
<td>✓ AUTOSAR Platform</td>
</tr>
<tr>
<td></td>
<td>✓ Vehicle dynamic control</td>
</tr>
<tr>
<td></td>
<td>✓ etc…</td>
</tr>
<tr>
<td>Fusion Host (Cortex-A53)</td>
<td>✓ RTOS, eg. Wind River VxWorks</td>
</tr>
<tr>
<td></td>
<td>✓ Hypervisor, eg. Wind River HVP</td>
</tr>
<tr>
<td></td>
<td>✓ AI accelerator host (via Ethernet)</td>
</tr>
<tr>
<td></td>
<td>✓ Sensor Fusion algorithm (object fusion, map fusion, etc…)</td>
</tr>
<tr>
<td></td>
<td>✓ Path planning algorithm</td>
</tr>
<tr>
<td></td>
<td>✓ Other algorithm & complex application</td>
</tr>
<tr>
<td></td>
<td>✓ etc…</td>
</tr>
<tr>
<td>Perception Host (FPGA)</td>
<td>✓ Camera perception algorithm</td>
</tr>
</tbody>
</table>

Diagram:
- ADCU
- Vehicle Network (CAN/Ethernet)
- AI Accelerator
- CAN
- CAN
- CAN
- GMSL
- GMSL
- GMSL
- GMSL
- GMSL
- GMSL
- USS Link
Mission
To foster the development of Automotive Industry in China with cutting-edge technology capability and exceptional service offering.

Vision
To become the greatest service platform for Automotive Electronics Industry.