
Summary This document describes the design implementation for controlling a Texas Instruments
ADS7870 Analog to Digital Converter (ADC) in a Xilinx CoolRunner™ XPLA3™ CPLD.
CoolRunner CPLDs are the lowest power CPLDs available and the ideal target device for
controlling a serial ADC in a portable handheld application. This document provides an
explanation of the VHDL code for the CoolRunner CPLD.

All related source code is provided for download. To obtain the VHDL code described in this
document, go to section VHDL Code Download, page 27 for instructions.

Overview Figure 1 illustrates the high-level block diagram for the data aquisiton system. The system
includes an XPLA3 CoolRunner CPLD, a Texas Instruments ADS7870 ADC, and a Toshiba
SRAM. The Texas Instrument ADS7870 ADC is initialized and controlled by the CoolRunner
CPLD. The CoolRunner CPLD takes conversion data from the ADC and writes the data to
SRAM. The SRAM used in the Insight Handspring Springboard development board is a 4 Mbit
Toshiba SRAM, TC55V400AFT. The Toshiba SRAM is a 16-bit word size SRAM, and is used
for storing data in a conversion cycle. Once conversion data is written into SRAM, the
CoolRunner CPLD allows the system processor to access the data.

Application Note: CoolRunner CPLD

XAPP355 (v1.1) January 3, 2002

Serial ADC Interface Using a CoolRunner
CPLD

R

Figure 1: High Level Block Diagram

Texas

ADS7870

Instruments
A/D Converter

CoolRunner XPLA3
CPLD

Shift Data In

Shift Data Out

2.5 MHz CClk

SClk

A/D Control

Analog
Inputs

8 Ch
(4 Ch Diff.)

D
at

a

A
d

d
re

ss

Toshiba
4Mbit SRAM

C
o

n
tr

o
l

XAPP355 (v1.1) January 3, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Serial ADC Interface Using a CoolRunner CPLD
R

Usage The VHDL code distributed with this document is designed such that minimal knowledge of
VHDL language is required. A designated "constants" section of the VHDL code can be edited
to specify various aspects of the ADS7870 which include:

• Initialization of internal registers

• Specification of the number of conversions for any (or all) of the eight single-ended
channels

• Specification of SRAM locations where conversion results should be written

Designers who do not wish to understand the VHDL code in detail can simply edit this
designated VHDL "constants" section, compile the design and program the CoolRunner CPLD.
For more information, refer to section High Level Control Logic, page 6.

The following sections will detail the ADS7870 interface for those who wish to understand the
VHDL implementation of the CPLD ADC interface.

For a complete Handspring design example, refer to "XAPP146: Designing an 8 Channel
Digital Volt Meter with the Insight Springboard Kit".

TI ADS7870 Introduction
The ADS7870 ADC is a low power 12-bit, serial, 8-channel analog to digital converter. The
ADS7870 ADC is ideal for portable and handheld applications. The ADS7870 contains an
integrated PGA (Programmable Gain Amplifier) as well as a 2.5 MHz clock source (CCLK) that
is used internally and can be divided for conversion cycles. The CCLK can be configured as an
output for use with multiple ADCs and other system devices. The CoolRunner CPLD uses the
CCLK from the ADC as its system clock.

The information presented in this section is provided for convenience. For more information on
the Texas Instruments ADC, see References, page 26.

Figure 2 shows a detailed block diagram of the ADS7870.

Figure 2: ADS7870 Block Diagram

X9499

Digital
I/O

REF

VREF BUFIN BUFOUT /REF IN

ADS7870

Registers
and

Control

Serial
Interface

MUX PGA

BUF

12-Bit
A/D

I/O 0
CS

CONVERT

RESET

BUSY

RISE/FALL

SCLK

DIN

Clock
Divider

Oscillator

CCLK

OSC ENABLE

DOUT

+

-

Analog
Inputs

8 Ch
(4 Ch Diff.)

I/O 1
I/O 2
I/O 3
2 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

http://www.xilinx.com/xapp/xapp146.pdf
http://www.xilinx.com/xapp/xapp146.pdf

Serial ADC Interface Using a CoolRunner CPLD
R

Functional Description
Each functional block shown in Figure 2 in the ADS7870 is described in detail in Table 1.

Table 1: ADS7870 Functional Blocks

Block Description

MUX The ADS7870 has eight analog-signal input pins, LN0 through LN7.
These input pins are connected to a multiplexer (a network of analog
switches). This multiplexer is controlled by four bits in the Gain/Mux
register.

LN0 through LN7 can each be configured as a single ended input or as
a differential input. The M2 bit in the MUX address will enable the user
to choose the polarity of the input.

The input signal at any of the LN0 through LN7 pins can range between
–0.2V and 3.5V.

Clock
Divider/Oscillator

CCLK, the conversion clock, is used by the A/D. CCLK can either
function as an input pin (the user supplies an external clock) or an
output pin (the ADS7870 will output a 2.5 MHz clock on the CCLK pin
and use this signal as its conversion clock).

The OSC ENABLE pin controls whether CCLK is an input or an output.
When pulled high, CCLK is an output. When OSC ENABLE = "0", the
user may supply an external clock.

REF
(Voltage Reference)

The Voltage Reference block can generate an output voltage of 1.15V,
2.048V, or 2.5V on the VREF pin.

In single-ended operation, the Voltage Reference will determine the
maximum positive full scale input. For instance if VREF = 2.5V, an input
of 2.5V will yield a result of +2047.

In differential mode, VREF will determine the center point. Register 7
controls whether the reference is turned on or off. On the Insight
Springboard, the VREF pin is tied to the BUFIN pin.

BUF
(Buffer Amplifier)

The Buffer Amplifier takes the internally generated Voltage Reference
as an input and outputs it to the A/D block. A Buffer is used in order to
increase the output current capability of the VREF pin.

The BUFE bit in Register 7 can turn the Buffer on or off. When the
buffer is on, the ADS7870 will use the internal reference. If the Buffer is
turned off, the ADS7870 will accept an external reference.

PGA
(Programmable
Gain Amplifier)

The PGA is a Programmable Gain Amplifier that can amplify the input
signal before it is applied to the A/D Block. This is useful if the dynamic
range of the input signal is small.

The PGA is capable of providing gains of 1, 2, 4, 5, 8, 10, 16, and 20
V/V.

The PGA gain is set by bits G2 through G0 of Register 4.

Serial Interface The ADS7870 communicates with the CoolRunner though this digital
serial port interface. The serial interface is comprised of four pins:
SCLK (Serial Data Clock), DIN (Serial Data Input), DOUT (Serial Data
Output), and CS (Chip Select).

The RISE/FALL pin, also controlled by the CoolRunner, determines
whether the ADS7870 will latch serial data on the rising or falling edge
of SCLK. In this design, SCLK is active on the rising edge (the
CoolRunner device always drives the RISE/FALL pin High).
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 3
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

ADS7870 Interface
The ADS7870 has four conventional serial interface pins: SCLK (serial data clock), DOUT
(serial data out), DIN (serial data in), and CS (chip select function) as shown in Figure 3. A wide
variety of microcontrollers can interface to this conventional serial port.

In this particular design, the CoolRunner CPLD is used to handle the serial interface. The
condition of the SCLK pin (active level logic "1" or logic "0") is explicitly controlled. The ADC is
configured to latch data on the active edge of SCLK by holding a logic "1" to the RISE/FALL*

Registers and
Control

The ADS7870 has a total of 10 user addressable registers. These
registers control various aspects of the ADS7870. For example, the
registers can control operation of the A/D, set the PGA gain, or control
the Digital I/O pins. A complete list of registers is available on page 16
of the ADS7870 Datasheet.

On the Insight Springboard, the CoolRunner A/D Interface will drive the
serial port and will configure and/or read these registers.

Digital I/O The ADS7870 provides four Digital I/O pins that can independently
function as an input or output. All four of these I/O pins are connected
to the CoolRunner device.

These Digital I/O pins are configured through the Serial Interface.

A write to Register 6 will configure the Digital I/O pins as inputs or
outputs. If any of the pins are configured as outputs, a write to Register
5 will determine whether the pin will output a "1" or a "0". Alternately, if
configured as an input, a read from Register 5 will reveal the state of
the pin.

12-bit A/D The serial interface configures and controls operation of the 12-bit A/D
Converter. The output of the converter is 2’s complement format. This
result is stored in registers 0 and 1. These registers are read through
the serial interface.

For a plot of Output Codes vs. Input Voltage, refer to Figure 2 on page
10 of the Texas Instruments ADS7870 Data Sheet.

Figure 3: ADC and CPLD Serial Interface

Table 1: ADS7870 Functional Blocks (Continued)

Block Description

SCLK

DIN

DOUT

CS
ADC Serial
Interface

CPLD
4 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

pin. Thus, the ADC interface ensures that data is available on the DIN pin when SCLK is "0"
and holds it when SCLK is "1". Figure 4 illustrates this timing.

Control and configuration of the ADS7870 is accomplished by command bytes written to
internal registers through the serial port. Command register device control includes MUX
channel selection, PGA gain, and Reference Input control. One must use the “register mode” in
order to configure a register.

Register Mode

In register mode, the first eight bits transmitted to the ADC specify the address of a particular
register, whether to perform a read or a write operation and whether the data will be sixteen bits
or eight bits. Immediately after these eight bits are sent, eight or 16 more bits (depending upon
what was specified) are sent or received. For a write, data is sent through DIN. For a read, data
will appear on the DOUT pin. For a complete list of available registers please refer to the
ADS7870 datasheet. The VHDL code in this design allows the user to customize the register
usage.

CS must remain Low in order to activate the serial interface. Once CS is brought Low, an
internal counter residing in the ADS7870 begins counting the number of active SCLK edges.
Raising the CS pin will put the DOUT pin in high impedance and will resynchronize the internal
counter. It is possible to keep CS Low throughout an entire chain of serial commands (i.e., write
to all address registers), but doing so will require careful management of the serial interface
pins. One must be extremely careful when attempting to do so, as one error will cascade
throughout the entire sequence.

Therefore, in this design, and in future designs, the CoolRunner CPLD briefly pulls the CS pin
High after the completion of every serial command. This ensures that errors will not cascade.

Direct Mode

A conversion can be initiated on the ADS7870 by issuing a direct mode command. In this
mode, a single 8-bit instruction byte is sent. The direct mode command will specify the input
channel and the PGA gain. Immediately after this 8-bit instruction is sent, the ADS7870 will
perform a conversion on the specified channel, with the specified PGA gain. The results will be
written to Registers 0 and 1 and can be retrieved using a register mode read. However, in this
design, the ADC is configured to use Read Back Mode 1. In this mode, the conversion result
will automatically clock out on the next active edge of SCLK, after the last bit of the direct mode
command is sent. Configuring the ADS7870 for Read Back Mode 1 will increase throughput
since a separate read instruction is not required to read the result in registers 0 and 1.

CPLD Design Operational Flow

The CoolRunner CPLD controls the initialization of the ADC and the reading of conversion
results. The CoolRunner CPLD then writes the conversion results of each conversion cycle to
SRAM. This interface is implemented using two state machines. The state machines control
the sending and receiving of parallel data and the configuring of internal ADC registers. After

Figure 4: ADC Serial Timing Diagram

SCLK

DIN data(7) data(6) data(1) data(0)
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 5
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

the CPLD initializes the ADC, it sends multiple "direct mode" instructions to initiate
consecutive conversion cycles. The 12-bit serial data in a conversion cycle is read in by the
CPLD and deserialized for a 16-bit word write to SRAM.

Figure 5 illustrates at a high level the operational flow for the ADC interface. The CPLD must
initialize the ADS7870 registers that are pertinent to the design. This includes specifying each
address register and the corresponding data to write. The CPLD then initializes the ADC for
performing a "direct mode" conversion cycle for a specific input channel. The CPLD must send
the direct mode command before reading out the ADC conversion data. The CPLD brings in
the serial data and presents the deserialized data word to SRAM. The CPLD continues to issue
the same direct mode command while reading the same input channel on the ADC. To read
another input channel on the ADC a different direct mode instruction must be sent. The direct
mode instruction includes control bits to specify the input channel on the ADC.

High Level Control Logic
The high level control logic for the ADC interface is implemented through the MAIN state
machine. The state machine is responsible for sequencing through the following steps:

1. Specify the address of the register to be written.

2. Send the appropriate address over the serial interface.

Figure 5: ADC Interface Operational Flow

More
Channels

?

No

Yes

END

START

Write to necessary
ADC register

X355_05_080801

More
Registers

?

No

Yes

Start new conversion by
issuing a direct mode command

for specified input channel

Read back conversion data

Write conversion data to SRAM
6 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

3. Specify the data to write to the specified register.

4. Send the data via the serial interface to write.

5. Continue steps 1–4 until all registers have been initialized.

6. Specify direct mode instruction for a conversion on a specific input channel.

7. Read data in and deserialize for the conversion cycle.

8. Continue steps 6–7 until all data is read from the specific input channel.

9. Repeat steps 6–8 to read from all input channels that are specified and enabled.

To implement this functionality, the MAIN state machine as shown in Figure 6 has been
designed and implemented. During the register mode states, the MAIN state machine specifies
the parallel 8-bit data word to write to the ADC. The MAIN state machine loads the 8-bit data
register and initiates the go_shift command. The SHIFT state machine, described in Shift
Control Logic, page 11, takes the parallel data word and sends data out the serial interface to
the ADC. The mode_flag signal is specified in the MAIN state machine for use by the SHIFT
state machine.
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 7
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

.

Table 2 describes the functionality of each state in the MAIN state machine control logic shown
in Figure 6. Note the mode_flag = "0" for the SHIFT control logic to designate the shift size for
data. When mode_flag = "0", an 8-bit data value is shifted out. This is either a register address,

Figure 6: MAIN State Machine Control Logic

IDLE

WRITE_ADDR

Register Mode

Assert go_shift <= "1"
& mode_flag = "0"

Assert go_shift <= "0"

Assert go_shift <= "1"

Assert go_shift <= "0"

WAIT_ADDR shift_done = "0"

shift_done = "1"

shift_done = "0"

shift_done = "1"

ADDR_DATA

WAIT_DATA

More
Registers

?

No

Yes

X355_06_080801

DIRECT_MODE

Direct Mode

Assert go_shift <= "1"

Assert go_shift <= "0"

Assert go_shift <= "1"
& mode_flag = "1"

Assert go_shift <= "0"

WAIT_DM shift_done = "0"

shift_done = "1"

shift_done = "0"

shift_done = "1"

ASSIGN_DATA

READ_DATA

More
Conversion

Cycles?

Yes

No

DONE
8 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

data to write to an address register, or the direct mode command. When mode_flag = "1", a
16-bit data value is shifted in from the ADC. This is for capturing the conversion data which
consists of 12 bits of data, three zero bits, and the overflow bit.

Table 2: MAIN State Machine Description

State Functionality

IDLE Initializes specific combinatorial signals.

WRITE_ADDR Specifies the address of the register to write to. Loads the 8-bit shift
register with this address. Asserts the go_shift signal to the SHIFT
control logic to start shifting the address out. This state assigns
wr_reg_num which specifies the address currently being written to for
use in later states. State also deasserts the enable flag (which is
TRUE for a write) for a specific register. Once the flag is disabled, the
state machine will not write to that register again.

WAIT_ADDR Waits for SHIFT control logic to complete shifting out data to ADC on
DIN. The signal shift_done will be asserted to represent this event.

ADDR_DATA Checks the value of wr_reg_num to compare which address was
specified earlier to the ADC. The data to write to that register is loaded
into the 8-bit shift register. Asserts the go_shift signal to the SHIFT
control logic to start shifting data out.

WAIT_DATA Waits for SHIFT control logic to complete shifting out data to ADC on
DIN. The signal shift_done will be asserted to represent this event.
Checks to see if any remaining flags are set to TRUE, which indicates
more registers need to be written to. The state machine then loops
back to the WRITE_ADDR state. If all flags are set to FALSE, the state
machine proceeds to the direct mode sequence.

DIRECT_MODE Specified the direct mode command to send to the ADC. Loads the
8-bit shift register with this direct mode command. Asserts the go_shift
signal to the SHIFT control logic to start shifting the direct command
out on DIN to the ADC. Based on direct mode command that is sent
(which represents which input channel to read from), the SRAM
address pointer is updated.

WAIT_DM Waits for SHIFT control logic to complete shifting out the direct mode
command to ADC on DIN. The signal shift_done will be asserted to
represent when the entire data word has been shifted out.

ASSIGN_DATA Sets mode_flag = "1". This signals the SHIFT control logic to count for
16 SCLK cycles to bring in the conversion data on DOUT. Asserts the
go_shift signal to the SHIFT control logic to start counting the
incoming data.

READ_DATA Waits for SHIFT control logic to assert shift_done to represent when
the 16-bit conversion data is done being shifted into the system.
Conversion data is written into SRAM at the specified location
represented in sram_address. Checks if the sram_address is at the
max address space for the specified ADC input channel. If so, then
loops back to DIRECT_MODE for the next input channel. If not, then
it loops back to DIRECT_MODE for the same input channel. If there
remains no ADC input channels to read from, the state machine
proceeds to the DONE state.

DONE End of state machine. Release control of bus to Handspring Visor.
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 9
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

Customizing the MAIN State Machine
The following is a description for customizing the MAIN state machine VHDL code for a specific
application. The designation of register mode is for initializing the ADC registers. This allows
the CPLD to configure the ADC. After, the ADS7870 has been configured, the MAIN state
machine sends the "direct mode" command. Direct mode represents when the ADC is
executing conversion cycles. The ADC will issue a direct mode command and then wait to
receive the conversion data for the next 16 clock cycles.

Register Mode

The MAIN state machine continues to remain in the register mode, for initialization, until all
registers have been set up and written to. The VHDL code enables the user to specify which
registers to write to and the data to write to each register. The following VHDL code illustrates
how to specify a write to ADDR3 in the ADC interface VHDL code.

constant WR_ADDR3_EN: BOOLEAN := TRUE;

-- Write/Read to Control Register
constant ADDR3: STD_LOGIC_VECTOR(7 downto 0) := ’00000011’;

-- Data to be written
constant DATA_WR_ADDR3: STD_LOGIC_VECTOR(7 downto 0) := ’00000100’;

Note the variable WR_ADDR3_EN can be set to either TRUE or FALSE, enabling or disabling
a write to ADDR3. If WR_ADDR3_EN is set to TRUE, then the data to write to that register must
also be specified. This is done in the DATA_WR_ADDR3 constant. In this example, we are
writing "0000 0100" to ADDR3, which specifies Read Back Mode 1 (MSB read back first) and
sets CCLK division factor = 1. For more information on the data that can be written to each
register, refer to References, page 26.

When writing to a register, not only is the register address specified, but additionally a read or
write operation and the data word size can be specified.

The data written to the control registers allows the ADC to set up features such as: reading
MSB or LSB first, the division factor of CCLK, PGA gain for a specific input channel, enabling
the use of the digital I/O, and many more features that can be found in the ADC data sheet.

Direct Mode

Once all the control registers have been initialized in the ADC in the register mode, the ADC
can now operate in the direct mode. The direct mode allows the external ADC controller to
specify the input channel and read the conversion data. The VHDL code in this design has
been constructed to ease the implementation for any application. The VHDL code enables the
designer to specify which input channels to read from and how many conversions are
requested on each input. The VHDL code for enabling/disabling register mode conversions is
similar to the set up for register mode initialization. The following VHDL code illustrates how to
perform eight conversions from the ADC single-ended input channel 0 and read eight
conversions from the ADC single-ended input channel 1.

-- ********** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 0 ***************
constant DM_SNG_LN0_EN : BOOLEAN := TRUE;
constant DM_SNG_LN0 : STD_LOGIC_VECTOR(7 downto 0) := ’10001000’;
constant SRAM_OFFSET0 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000000000’;
constant SRAM_HIGH0 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000000111’;

-- *********** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 1 ************
constant DM_SNG_LN1_EN : BOOLEAN := TRUE;
constant DM_SNG_LN1 : STD_LOGIC_VECTOR(7 downto 0) := ’10001001’;
10 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

constant SRAM_OFFSET1 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000001000’;
constant SRAM_HIGH1 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000001111’;

The number of conversions in this particular example is controlled by counting each conversion
write to SRAM. Therefore, once the address counter for the SRAM reaches the SRAM_HIGH
offset, the specified number of conversions are counted. To enable a conversion from a
specific input channel, the VHDL constant DM_SNG_LN0_EN set to TRUE will enable multiple
conversions from LN0 in the ADC. Note that for only reading from one single-ended input
channel, all other input channel enable constants must be set to FALSE. The constant
DM_SNG_LN0 stores the value to send a direct mode command for a conversion on LN0.
Refer to the ADS7870 data sheet for more information on sending a direct mode command.

Shift Control Logic
The shift control logic is initiated by the main control logic state machine. The SHIFT state
machine is used for shifting out and shifting in data to/from the ADC. The SHIFT state machine
is responsible for sending out data for a register address write, a register data write, and a
direct mode instruction write. The shift state machine also shifts in data during the direct mode
conversion cycles. For all register and direct mode instructions to the ADC, the data word to
write is eight bits. For shifting in the 12-bit conversion data, a 16-bit shift register is used. The
data format in a conversion cycle is specified in ADDR3, and includes 12 data bits, three zero
bits, and an overflow bit.

The SHIFT control logic is shown in Figure 7. The SHIFT state machine is activated on the
rising edge of go_shift. The go_shift signal is asserted from the MAIN state machine and
initiates a write or read to/from the ADC. The mode_flag is used to interpret whether the CPLD
is writing to a register, sending a direct mode command, or reading in a conversion cycle. The
mode_flag signal is equal to "0" during a register or direct mode command and mode_flag = "1"
when reading in a conversion cycle.

The SHIFT state machine is responsible for generating the shift clock, SCLK, and setting up the
appropriate data to send out. As previously described, the data to send must be on the DIN line
before the active edge of SCLK. In the SHIFT state machine, the data register holding the word
to send is enabled in the SC0 state (SCLK = "0"). Then in the SC1 state, SCLK = "1" and the
data bit is shifted out on DIN.

During a direct mode conversion cycle, the SHIFT state machine controls SCLK. The SHIFT
state machine reads in data on the DOUT line at the active edge of SCLK, in the SC1 state.

For more information on implementing these state machines to initialize and read conversion
data from the ADC, see section Hardware Implementation, page 16.

Figure 7: SHIFT State Machine Control Logic

IDLE go_shift = "0"

go_shift = "1"

shift_done <= "1"

SC0

(CNT<8 & mode_flag = "0") or
(CNT<16 & mode_flag = "1")

(CNT = 8 & mode_flag = "0") or
(CNT = 16 & mode_flag = "1")

SC1

X355_07_080801
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 11
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

Allowing the
Visor to Read
Conversion
Results

After conversion results have been written to SRAM, the Handspring Visor must be given
access to read the conversion result from SRAM. This transfer of control occurs once the MAIN
state machine has written all conversion results to SRAM. This is specified in the DONE state
of the MAIN state machine.

This section will detail how the CoolRunner CPLD releases control of the bus to the Handspring
Visor.

On the Insight Springboard Development Kit, all address, data and control signals originating
from the Springboard expansion area are routed into the CoolRunner CPLD. These signals are
then internally routed to a brand new set of pins, which are then externally connected to the
SRAM, A/D, and Flash. XAPP147: "Low Power Handspring Springboard Module Design
with CoolRunner CPLDs", illustrates this routing scheme. In the most basic case, the
CoolRunner would simply act as a buffer for all signals, all signals would go directly into and
then out of the CPLD, without being manipulated.

In this case, however, the functionality of the CoolRunner has increased because it has the
added task of controlling the ADS7870. The CoolRunner must allow both the Visor and the A/D
to be able to write (and read) to SRAM. Therefore, the simple interface shown in XAPP147
must be slightly modified to include multiplexers. These multiplexers are controlled by the
ADS7870 interface. When the interface is active, the multiplexers allow for the CPLD to write
conversion results to SRAM. When conversions are finished, the Visor is allowed to read these
conversions from SRAM, or alternately write new values to SRAM.

Data[15:0]
Figure 8 below shows the functionality that would allow for data to be passed to/from the Visor,
through the CoolRunner CPLD.

In Figure 8, “SP_D[15:0]” is the name given to the data lines originating from the Visor.
"D[15:0]” is the name of the buffered signal. These buffered data lines are routed to the data
lines of the SRAM and Flash.

A multiplexer is inserted between the input buffer of “SP_D[15:0]” and the output buffer for
“D[15:0]”. The multiplexer’s inputs are “SRAM_Write_Data” and “AD_DATA”.
SRAM_Write_Data is a 16-bit signal that represents the data value present on the Springboard
Data lines. AD_DATA, is a-16 bit signal that is output from the A/D Interface. AD_DATA is the
value of a conversion result.

Mux_Sel, the select line for the multiplexer, controls which of the two inputs will be potentially
applied to SRAM and/or Flash. The output value of the multiplexer is not guaranteed to be
applied since the output of the MUX is tied to the input of a tri-state buffer. Therefore, the value
of the tri-state control signal, “SRAM_Write_Enable” will determine if data will be output.

Figure 8: Data Bus Multiplexing in CoolRunner CPLD
12 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

When Mux_Sel is "0" the Handspring Visor will have control of the data lines. Alternately, when
Mux_Sel is "1", the A/D Interface is allowed to write data to SRAM. The A/D Interface controls
the value of Mux_Sel so that when it is active, the value of Mux_Sel will be "1" and when it is
complete, the value will be set to "0".

SRAM_Write_Enable is a tri-state control signal that determines if the “D[15:0]” pins will
function as an input or as an output. D[15:0] will function as outputs if the value of
SRAM_Write_Enable is a "1". On the other hand, the D[15:0] pins will be inputs if the tri-state
control signal is "0".

The SRAM_Write_Enable equation is equal to:

(SM_WE) + (SM_WE) & [WE & (CS0 + CS1)]

Table 3 describes each literal in the SRAM_Write_Enable equation.

In the SRAM_Write_Enable equation, the SM_WE literal is generated by the A/D Interface.
SM_WE is declared to be "1" when the A/D interface is running, thereby making the entire
equation equal to "1". This enables the output buffer and since MUX_Sel is "1" when the A/D
Interface is active, the A/D conversion results can be written to SRAM.

When the conversions are complete, the A/D Interface declares SM_WE to be "0" and Mux_Sel
to be "0" so that the Handspring can either read the conversion results stored in SRAM or write
new data to SRAM.

Once the Visor is given control of the bus (i.e., SM_WE becomes "0"), the Visor can enable the
output buffer by executing a write to SRAM. A write operation to an address between
0x29000000 and 0x29FFFFFF (the default memory mapped region for CS1) will cause CS1
and WE to become "0", making the SRAM_Write_Enable equation true.

If needed, the Visor may also write to the Flash memory region that corresponds to CS0
(address 0x28000000 to 0x28FFFFFF). Doing this will create a falling edge on CS0 and WE.

The Visor can retrieve contents in SRAM by executing a read operation. Once again, an output
buffer will determine if the SP_D[15:0] pins will provide data to the Visor or if these pins will
send data to external components. This output buffer is controlled by the SRAM_Read_Enable
signal.

The equation for SRAM_Read_Enable is equal to:

OE & (CS0 + CS1)

If the Visor executes a read operation from SRAM, the CS1 and OE signals will go Low. The
SP_D[15:0] pins will then be allowed to output data to the Visor.

Table 3: Literal Description

Literal Description Function

SM_WE Write Enable generated by A/D Interface "0" when A/D Interface is inactive
"1" when A/D Interface is active

WE Write Enable signal generated by Visor "0" when Visor executes a write
"1" when others

CS0 Chip Select 0 signal generated by Visor "0" when Visor writes or reads to CS0
memory region
"1" when others

CS1 Chip Select 1 signal generated by Visor "0" when Visor writes or reads to CS1
memory region
"1" when others

Notes:
1. By default, the CS0 memory region is mapped to address locations 0x28000000 to 0x28FFFFFF.

This region corresponds to the Flash address locations.
2. By default, the CS1 memory region is mapped to address locations 0x29000000 to 0x29FFFFFF.

This region corresponds to the SRAM address locations.
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 13
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

Address Lines
The address lines originating from the Springboard Expansion Connector, “SP_A[23:1]”, are
routed through the CoolRunner. The SP_A[23:1] pins are connected internally to one input of
the address multiplexer, as shown in Figure 9. This Multiplexer has two inputs, one of which is
SP_A[23:1] and the other which is ADDR_COUNT. MUX_SEL, the same select signal for the
other multiplexers in this design, is used for the select line of this multiplexer.

A[23:1] is the output of this switch. This output bus is tied to external pins which are then routed
to the address lines of Flash and SRAM. Figure 9 illustrates this.

When the A/D Interface is active, MUX_SEL is set to "1". This allows the value of
SM_ADDRESS to determine the value of A[23:1].

The VHDL signal SM_ADDRESS is assigned for each write to SRAM. The value of
SM_ADDRESS is initialized for a specific input channel as specified in the VHDL "constants"
section discussed in section, Direct Mode, page 10. This address counter, SM_ADDRESS is
increment for each subsequent write to SRAM. The ADC will stop reading from the current
input channel once the SM_ADDRESS counter reaches the max address space for the current
input channel.

The Digital Volt Meter design shown in Hardware Implementation, page 16 writes to address
locations 0, 1, and 2 of SRAM for the ADC input channel 0.

Figure 9: Address MUX

Chip Select 1
Figure 10 shows the Chip Select 1 multiplexer. A switch is needed in order to give the A/D
Interface the ability to control the CS pin of the SRAM. The SRAM CS pin is an active Low
signal that enables the SRAM chip. When CS is Low and RW (Write Enable) is Low, data will
be written to SRAM. When CS is Low and OE (Output Enable) is Low, the SRAM will output
data so a read operation can occur.

SPRING_CHIP1_ENn is the CS1 pin originating from the Visor’s expansion area.
STATE_MACHINE_SRAM_ENn is an internal signal that is controlled by the A/D Interface. The
SRAM_CHIP1_ENn signal is externally routed to the CS pin of the SRAM.

When the A/D Interface is active, MUX_SEL is "1" and hence the value of
STATE_MACHINE_SRAM_EN determines the value of the CS pin on the SRAM. When the
A/D Interface writes a conversion result to SRAM, it pulls the STATE_MACHINE_SRAM_EN
signal and the STATE_MACHINE_WE (see next page) signal Low.

MUX_SEL

0

1

SP_A[23:1]
23

A[23:1]
23

SM_ADDRESS
23
14 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

After the conversions are complete, MUX_SEL is set to "0" and the Handspring Visor can once
again perform its own read and write operations.

Write Enable
Figure 11 shows the Write Enable Multiplexer. This multiplexer is needed in order to give the
A/D Interface the ability to control the RW (Write Enable) pin of SRAM. The RW pin is an active
low signal that, when used in conjunction with the CS pin, will enable a write operation to occur.

SPRING_WRITE_ENn is the Write Enable pin originating from the Visor’s expansion area.
STATE_MACHINE_WE is an internal signal that is controlled by the A/D Interface. The output
of the multiplexer, READ_WRITEn is externally routed to the RW pin of the SRAM.

When the A/D Interface is active, MUX_SEL is "1" and the value of STATE_MACHINE_WE will
determine the value of the SRAM RW pin. When the A/D Interface writes a conversion result to
SRAM, it pulls the STATE_MACHINE_WE signal Low and the STATE_MACHINE_SRAM_ENn
signal low. (See Chip Select 1, page 14 for an explanation of the
STATE_MACHINE_SRAM_ENn signal.

After the conversions are complete, MUX_SEL is set to "0" and the Handspring Visor can once
again perform its own read and write operations.

Output Enable
Figure 12 shows the Output Enable multiplexer. This multiplexer is needed in order to give the
A/D Interface the ability to control the OE (Output Enable) pin of SRAM. The OE pin is an active
low signal that, when used in conjunction with the CS pin, will allow a read operation to occur.

SPRING_OUTPUT_ENn is the Output Enable pin originating from the Visor’s expansion area.
STATE_MACHINE_OE is an internal signal that is controlled by the A/D Interface. The output
of the multiplexer, OUTPUT_ENn is externally routed to the OE pin of the SRAM.

When the A/D Interface is active, MUX_SEL is "1" and the value of STATE_MACHINE_OE will
determine the value of the SRAM OE pin. When the A/D Interface writes a conversion result to
SRAM, it pulls the STATE_MACHINE_OE signal Low and the STATE_MACHINE_SRAM_ENn
signal Low. (See previous page for an explanation of the STATE_MACHINE_SRAM_ENn
signal.)

Figure 10: Chip Select 1 MUX

Figure 11: Write Enable MUX

X9504
MUX_SEL

0

1

SPRING_CHIP1_ENn
SRAM_CHIP1_ENn

STATE_MACHINE_SRAM_ENn

X9505
MUX_SEL

0

1

SPRING_WRITE_ENn
READ_WRITEn

STATE_MACHINE_WE
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 15
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

After the conversions are complete, MUX_SEL is set to "0" and the Handspring Visor can once
again perform its own read and write operations.

Hardware
Implementation

Usage Example
The following section is provided as an example for modifying the VHDL code to target a
specific application. Assume that in this application, the user wants to configure ADDR3,
ADDR5, ADDR6, and ADDR7 and that the ADS7870 must perform a conversion on all eight
input channels.

The following VHDL register "constants" have been edited for the following hardware
implementation. Note we are writing "0000 0100" to ADDR3, "0000 0101" to ADDR5, "0000
1111" to ADDR6, and "0011 1100" to ADDR7.

In the VHDL direct mode "constants" section, flags can be set to enable a single ended
conversion on a specific input channel of the ADC. For example, the DM_SNG_LN0_EN
constant is set to TRUE to enable a single ended conversion on input channel 0. To specify the
SRAM address space for each input channel, the SRAM_OFFSET0 constant is set to
"00000000000000000000000". SRAM_HIGH0 is set to "00000000000000000000111". This
represents that eight samples of channel 0 will be written to SRAM. Due to the pipelined nature
of the ADC, the conversion data stored at address 0 should be discarded. Therefore, SRAM
address 1 will store the first sample of channel 0. Also note, the SRAM address specified in the
VHDL code is 23 bits wide. This is because the Springboard address 0 (A0) is set to 0. This
means that A0 is appended to the SRAM address, and data is written to SRAM locations 0, 2,
4, etc.

--***************** ADDR0 (ADC OUTPUT REGISTER) ******************
-- Description: ADDR0 stores the LS Byte of the conversion result.
-- R/W : READ ONLY
constant RD_ADDR0_EN: BOOLEAN := FALSE;
constant ADDR0 : STD_LOGIC_VECTOR(7 downto 0) := ’01000000’; -- Read ADDR 0

--******************** ADDR1 (ADC OUTPUT REGISTER) ****************
-- Description: ADDR1 stores the MS Byte of the converstion result
-- R/W : READ ONLY
constant RD_ADDR1_EN: BOOLEAN := FALSE;
constant ADDR1 : STD_LOGIC_VECTOR(7 downto 0) := ’01000001’; -- Read ADDR 1

--********************* ADDR2 (PGA VALID REGISTER) ***************
-- Description: ADDR2 reveals if PGA has exceeded allowable values
-- R/W : READ ONLY
constant RD_ADDR2_EN: BOOLEAN := FALSE;
constant ADDR2 : STD_LOGIC_VECTOR(7 downto 0) := ’01000010’; -- Read ADDR2

--******************** ADDR3 (A/D CONTROL REGISTER) ***************
-- Description: ADDR3 configures CCLK Divider and read back mode operation
-- R/W : R/W
constant WR_ADDR3_EN: BOOLEAN := TRUE;

Figure 12: Output Enable MUX

X9506
MUX_SEL

0

1STATE_MACHINE_OE

OUTPUT_ENn
SPRING_OUTPUT_ENn
16 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

-- Write/Read to Control Register
constant ADDR3 : STD_LOGIC_VECTOR(7 downto 0) := ’00000011’;

-- Data to be written
constant DATA_WR_ADDR3: STD_LOGIC_VECTOR(7 downto 0) := ’00000100’;

--********************* ADDR4 (GAIN/MUX REGISTER) ****************
-- Description: ADDR4 configures the PGA gain and the input channel
-- selection. (A direct mode operation will accomplish this as well)
-- R/W : R/W
constant WR_ADDR4_EN: BOOLEAN := FALSE;

-- Write/Read to Gain/Mux Register
constant ADDR4 : STD_LOGIC_VECTOR(7 downto 0) := ’00000100’;

-- Data to be written
constant DATA_WR_ADDR4: STD_LOGIC_VECTOR(7 downto 0) := ’00000000’;

--****************** ADDR5 (DIGITAL I/O STATE REGISTER) ***************
-- Description: ADDR5 sets/reveals the state of the digital IO pins.
-- R/W : R/W
constant WR_ADDR5_EN: BOOLEAN := TRUE;

-- Write/Read Digital I/O State Reg
constant ADDR5 : STD_LOGIC_VECTOR(7 downto 0) := ’00000101’;

-- Data to be written
constant DATA_WR_ADDR5: STD_LOGIC_VECTOR(7 downto 0) := ’00000101’;

--**************** ADDR6 (DIGITAL I/O CONTROL REGISTER) ***************
-- Description: ADDR6 determines whether each of the four IO pins will be
-- an output or and output
-- R/W : R/W
constant WR_ADDR6_EN: BOOLEAN := TRUE;
constant ADDR6 : STD_LOGIC_VECTOR(7 downto 0) := ’00000110’;
constant DATA_WR_ADDR6: STD_LOGIC_VECTOR(7 downto 0) := ’00001111’;

--**************** ADDR7 (REF/OSCILLATOR CONTROL REGISTER)************
-- Description: ADDR7 determines:
-- a) Whether the internal oscillator is used for the conversion clock
-- b) Whether the internal voltage reference and buffer are ON or OFF
-- c) Whether the voltage reference is 2.5V, 2.048V or 1.15V
-- R/W : R/W

constant WR_ADDR7_EN: BOOLEAN := TRUE;
constant ADDR7 : STD_LOGIC_VECTOR(7 downto 0) := ’00000111’;
constant DATA_WR_ADDR7: STD_LOGIC_VECTOR(7 downto 0) := ’00111100’;

--*************** ADDR24 (SERIAL INTERFACE CONTROL REGISTER) **********
-- Description: ADDR24 allows certain aspects of the serial interface to be
-- changed by the user
-- R/W : R/W
constant WR_ADDR24_EN: BOOLEAN := FALSE;

-- Serial Interface Control
constant ADDR24 : STD_LOGIC_VECTOR(7 downto 0) := ’00011000’;
constant DATA_WR_ADDR24: STD_LOGIC_VECTOR(7 downto 0) := ’00000000’;

--******************** ADDR31 (ID REGISTER) **********************
-- Description: ADDR31 reveals which version of ADS7870 is being used
-- R/W : READ ONLY
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 17
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

constant WR_ADDR31_EN: BOOLEAN := FALSE;

-- ID Register
constant ADDR31 : STD_LOGIC_VECTOR(7 downto 0) := ’00011111’;

-- ********* DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 0 ************
constant DM_SNG_LN0_EN : BOOLEAN := TRUE;
constant DM_SNG_LN0 : STD_LOGIC_VECTOR(7 downto 0) := ’10001000’;
constant SRAM_OFFSET0 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000000000’;
constant SRAM_HIGH0 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000000111’;

-- ********** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 1 *************
constant DM_SNG_LN1_EN : BOOLEAN := TRUE;
constant DM_SNG_LN1 : STD_LOGIC_VECTOR(7 downto 0) := ’10001001’;
constant SRAM_OFFSET1 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000001000’;
constant SRAM_HIGH1 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000001111’;

-- ********** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 2 *************
constant DM_SNG_LN2_EN : BOOLEAN := TRUE;
constant DM_SNG_LN2 : STD_LOGIC_VECTOR(7 downto 0) := ’10001010’;
constant SRAM_OFFSET2 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000010000’;
constant SRAM_HIGH2 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000010111’;

-- ********** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 3 *************
constant DM_SNG_LN3_EN : BOOLEAN := TRUE;
constant DM_SNG_LN3 : STD_LOGIC_VECTOR(7 downto 0) := ’10001011’;
constant SRAM_OFFSET3 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000011000’;
constant SRAM_HIGH3 : STD_LOGIC_VECTOR (22 downto 0) :=
"00000000000000000011111";

-- ********** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 4 **************
constant DM_SNG_LN4_EN : BOOLEAN := TRUE;
constant DM_SNG_LN4 : STD_LOGIC_VECTOR(7 downto 0) := ’10001100’;
constant SRAM_OFFSET4 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000100000’;
constant SRAM_HIGH4 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000100111’;

-- ********** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 5 **************
constant DM_SNG_LN5_EN : BOOLEAN := TRUE;
constant DM_SNG_LN5 : STD_LOGIC_VECTOR(7 downto 0) := ’10001101’;
constant SRAM_OFFSET5 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000101000’;
constant SRAM_HIGH5 : STD_LOGIC_VECTOR (22 downto 0) :=
"00000000000000000101111’;

-- ********** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 6 *************
constant DM_SNG_LN6_EN : BOOLEAN := TRUE;
constant DM_SNG_LN6 : STD_LOGIC_VECTOR(7 downto 0) := ’10001110’;
constant SRAM_OFFSET6 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000110000’;
constant SRAM_HIGH6 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000110111’;

-- ********* DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 7 **************
18 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

constant DM_SNG_LN7_EN : BOOLEAN := TRUE;
constant DM_SNG_LN7 : STD_LOGIC_VECTOR(7 downto 0) := ’10001111’;
constant SRAM_OFFSET7 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000111000’;
constant SRAM_HIGH7 : STD_LOGIC_VECTOR (22 downto 0) :=
’00000000000000000111111’;

ADC Initialization (Register Mode)
Using these VHDL "constants", the following ADC interface will be implemented:

1. Write data to Address 3, the “ADC Control Register” (ends with first rising edge of CS).

2. Write data to Address 6, the “Digital I/O Control Register” (ends with second rising edge of
CS).

3. Write data to Address 5, the “Digital I/O State Register” (ends with third rising edge of CS).

4. Write data to Address 7, the “Reference Oscillator Register” (ends with fourth rising edge
of CS).

5. Initiate three consecutive conversions on ADC input channel 0.

Note that CS goes High and SCLK temporarily stops in between commands (i.e., whenever
data has been written to ADDR3, ADDR6, and ADDR5). This is done because a rising edge on
CS will resynchronize the serial interface.

Note that in the beginning, DOUT tends to follow the CS pin. This is expected because of two
factors: first, the DOUT pin enters high impedance when CS is held High and second, the
DOUT pin is externally pulled up.

Step 1: Writing to ADDR3

Upon reset, the state machine will execute a register mode write to Address 3, the ADC Control
Register (See ADS7870 Datasheet). A value of DIN = “0000 0100” written to ADDR3 will
configure the A/D for Read Back Mode 1. In this mode, the serial interface configures itself to
clock out a conversion result as soon as a conversion is started. A read instruction is not
required to retrieve the result, thereby increasing the throughput rate by saving eight SCLK
cycles. The very first data read back will be discarded, but subsequent values pipeline the
conversion and readback activities.

This sequence requires a total of 16 SCLK cycles — eight bits to specify the Address, and eight
more to write data to that address. After these 16 bits are sent, the state machine will enter a
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 19
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

wait state to resynchronize the serial interface. In this wait state, SCLK remains Low, and CS
is momentarily raised High. Figure 13 shows a logic analyzer trace of this sequence.

Step 2: Writing to ADDR6

After exiting a wait state, the state machine executes a register mode write to Address 6, the
Digital I/O Control Register (See page 19 of A/D Datasheet). The ADS7870 configures all four
digital I/O pins as outputs by writing a data value of “0000 1111”.

As above,16 more SCLK cycles are required, followed by a wait state, to resynchronize the
serial port. Figure 14 shows a logic analyzer trace of this sequence.

Figure 13: Writing to ADDR3
20 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

Step 3: Writing to ADDR5

Next, the value of each I/O pin is configured to output a "1" or a "0". A pattern of DIN = “0000
0110” is transmitted to initiate an 8-bit write to Address 5, the Digital I/O State Register. The
ADS7870 will then output a "0" on I/O1, a "1" on I/O2, a "0" on I/O3, and a "1" on I/O4 by
sending “0000 0101” on the next sequence on DIN.

In this example, this test case is used with the Insight Handspring Development Board. Since
all four Digital I/O pins are routed into the CoolRunner CPLD, they are used to control the four
LEDs on the Insight Springboard Development Card. If the serial interface is working properly,
the LEDs should read On, Off, On, Off.

Writing to this register requires another sixteen SCLK cycles and a wait state. Note that it is not
absolutely necessary to write to ADDR6 and ADDR5. These two registers do not affect the
conversion result. However, these registers have been configured to illustrate how to use the
serial interface. In addition, they provide a convenient way to check the serial interface through
the LEDs. A logic analyzer trace of this sequence is provided below in Figure 15.

Figure 14: Writing to ADDR6
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 21
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

Step 4: Writing to ADDR7

The Reference/Oscillator Register, ADDR7, configures the reference and the buffer (page 19 of
ADS7870 Datasheet). After a pattern of “0000 0111” is sent to specify an 8-bit write to ADDR7,
a sequence of “0011 1100” is written to this register.

The OSCR and OSCE bits are now set to "1". Enabling the OSCE bit will power the internal
oscillator, and CCLK will output a 2.5 MHz signal. Setting the OSCR bit configures the
ADS7870 to use this 2.5 MHz internal clock for the reference. The REFE and BUFE bits are
also enabled. This turns on the Reference and the Buffer. And finally, by setting R2V and RBG
bits to "0", VREF is set to 2.5V. This sets the maximum full-scale input to 2.5V in single ended

Figure 15: Writing to ADDR5
22 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

mode. Sixteen more SCLK cycles and a wait state are needed, and a logic analyzer trace of
this sequence is shown in Figure 16.

Direct Mode Conversions

Direct Mode Command 1

At this point, all registers have been properly configured, and the state machine is ready to
send the first direct mode command to initiate a single conversion. Assuming that the LN0
input (an analog input of the ADS7870) is tied to the voltage site (test point), eight bits, “1000
1000” are sent through the DIN pin. This commands the A/D to start a conversion on input
channel LN0, which has been configured as single ended, with the PGA (Programmable Gain
Amplifier) gain set to "1".

Since Address 3 is configured for Read Back Mode 1, the ADS7870 will begin clocking out the
result of the previous conversion immediately after the 8-bit direct mode command. Therefore,
16 more SCLK cycles are sent to the ADS7870. Thus, for this entire sequence, a total of 24
SCLK cycles are needed, eight for the direct mode command, and 16 for the result.

Note however, that on the last 16 clock cycles, DOUT remains Low. This is expected.
Remember that the first result coming out of the ADS7870 is always invalid, due to the fact that
the result is from the previous conversion.

Figure 17 actually shows more than 24 SCLK cycles instead of the 16 SCLK cycles that have
been shown in the previous figures. This is done in order to show BUSY going High and then
Low after the first direct mode command.

Figure 16: Writing to ADDR7
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 23
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

In reality, when we are chaining several conversions together, the CoolRunner does not need
to monitor the BUSY pin. BUSY is shown just to confirm that a conversion is taking place.

Direct Mode Command 2

The second direct mode command is issued on the next rising edge of SCLK (i.e., on the 25th
clock edge starting from when the first direct mode command sequence was issued).

Again, 24 SCLK cycles are needed for this second frame. The same 8-bit direct mode
command of “1000 1000” is sent, but this time, notice that DOUT is driving data. This data is

Figure 17: Direct Mode Command 1
24 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

the result of the first conversion. The result of this second conversion is returned in the next
frame as shown in Figure 18. .

Within the frame of this example, DOUT reads “0000 1001 1011 0000”. Since the ADS7870 is
set for Read Back Mode 1, the MS Byte of the conversion result is returned first. In other
words, ADDR1 will clock out first, followed by ADDR0. (The Texas Instruments ADS7870
datasheet provides details of ADDR1 and ADDR0).

The 12-bit output code in this example is “0000 1001 1011”. This is equal to +155. The
corresponding measured voltage would then equal:

(155 / 2047) * 2.5 = 0.189 Volts

It may also be of interest to see that this second direct mode command was issued when the
first conversion was still in progress (Note the BUSY pin). The ADS7870 places this next

Figure 18: Direct Mode Command 2

Table 4: Contents of ADDR1, the MS Byte

D7 D6 D5 D4 D3 D2 D1 D0

ADC11 ADC10 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4

0 0 0 0 1 0 0 1

Table 5: Contents of ADDR2, the LS Byte

D7 D6 D5 D4 D3 D2 D1 D0

ADC3 ADC2 ADC1 ADC0 0 0 0 OVR

1 0 1 1 0 0 0 0
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 25
1-800-255-7778

Serial ADC Interface Using a CoolRunner CPLD
R

conversion in queue and allows the current conversion to finish. Maximum throughput is
obtained through this method, as the next conversion will begin immediately after the previous
one finished. Again, note how the BUSY pin goes low then high during the conversion cycle.

Direct Mode Command 3

Figure 19 shows the third direct mode command. Like the previous direct mode command, this
frame initiates a third consecutive conversion and retrieves the result of the second conversion.

Note, only three direct mode conversion cycles are shown for single ended input channel LN0.
The implemented design allows for eight direct mode conversion cycles on each input channel
of the ADC.

Conclusion The ADS7870 interface presented in this document is an easy to use reference design that will
allow for quick customizing of the Insight Springboard Development Card. Regardless of
whether a designer understands the VHDL language, the designated "constants" section of the
VHDL code can be modified to configure the ADS7870 in a way that best complements a
specific Springboard design. After modification, simply implement the design and program the
CoolRunner CPLD. The inherent low power characteristics of the CoolRunner CPLD will come
at no cost, and users will recognize the advantages of programmable logic.

References Texas Instruments ADS7870 Data Sheet located at http://www.ti.com/

Figure 19: Direct Mode Command 3
26 www.xilinx.com XAPP355 (v1.1) January 3, 2002
1-800-255-7778

http://www.ti.com/

Serial ADC Interface Using a CoolRunner CPLD
R

VHDL Code
Download

VHDL source code and test benches are available for this design. THE DESIGN IS PROVIDED
TO YOU "AS IS". XILINX MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND XILINX SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
OR FITNESS FOR A PARTICULAR PURPOSE. While this design has been verified on
hardware, it should be used only as an example design, not as a fully functional core. XILINX
does not warrant the performance, functionality, or operation of this design will meet your
requirements, or that the operation of the design will be uninterrupted or error free, or that
defects in the design will be corrected. Furthermore, XILINX does not warrant or make any
representations regarding use or the results of the use of the design in terms of correctness,
accuracy, reliability or otherwise.

XAPP355 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/25/01 1.0 Initial Xilinx release.

01/03/02 1.1 Minor revisions.
XAPP355 (v1.1) January 3, 2002 www.xilinx.com 27
1-800-255-7778

http://www.xilinx.com/products/xaw/coolvhdlq.htm
http://www.xilinx.com/products/xaw/coolvhdlq.htm

	Summary
	Overview
	Usage
	TI ADS7870
	Introduction
	Functional Description
	ADS7870 Interface
	Register Mode
	Direct Mode

	CPLD Design
	Operational Flow
	The CoolRunner CPLD controls the initialization of the ADC and the reading of conversion results....
	High Level Control Logic
	Customizing the MAIN State Machine
	Register Mode
	Direct Mode

	Shift Control Logic

	Allowing the Visor to Read Conversion Results
	Data[15:0]
	Address Lines
	Chip Select 1
	Write Enable
	Output Enable

	Hardware Implementation
	Usage Example
	ADC Initialization (Register Mode)
	Step 1: Writing to ADDR3
	Step 2: Writing to ADDR6
	Step 3: Writing to ADDR5
	Step 4: Writing to ADDR7

	Direct Mode Conversions
	Direct Mode Command 1
	Direct Mode Command 2
	Direct Mode Command 3

	Conclusion
	References
	VHDL Code Download
	Revision History

