
XAPP936 (v1.1) March 5, 2007 www.xilinx.com 1

© 2006-2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm.
PowerPC is a trademark of IBM Inc. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without
notice. NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this
feature, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any
warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note focuses on the baseband demodulation of Quadrature Amplitude
Modulation (QAM) signals and, more specifically, on the use of a fractional rate decimator
block. This application note also reviews polyphase decimating filter architectures and
discusses the fractional rate decimator, its Xilinx System Generator 8.1i implementation, and its
results.

Overview The modern software-defined radio (SDR) system often must transmit and receive a variety of
different digital waveforms. These waveforms might be different modulation formats
(Quadrature Phase Shift Keying (QPSK), 16-QAM, etc.), different symbol rates (bandwidths),
or even at different center frequencies (cellular band, Personal Communication Systems
(PCS), band, unlicensed bands, etc.). Instead of building separate processing chains to deal
with the many different waveforms that must be processed, a more hardware efficient method
is to build a single processing chain that has enough programmable flexibility to process all
required formats.

QAM
Demodulator

A basic block diagram of a candidate demodulator is shown in Figure 1.

The QAM demodulator shown in Figure 1 consists of an analog Radio Frequency (RF) section
and a digital section (within dashed line). The chosen architecture is a passband sampling
arrangement where the signal is RF down converted to a particular Intermediate Frequency
(IF) and then sampled at a particular (constant) frequency for all supported signals. The sample
rate clock that drives the Analog-to-Digital Converter (ADC) is also used to clock the digital
processing block. There are a few requirements on the appropriate sampling frequency, and

Application Note: Virtex-5, Virtex-4, Spartan-3

XAPP936 (v1.1) March 5, 2007

Continuously Variable Fractional Rate
Decimator
Author: Sean Caffee

R

Figure 1: Passband Sampling QAM Demodulator

LNA Analog BPF

RF Oscillator

Analog LPF

ADC

Analog RF Section

QAM Demodulator

Fractional
Resampler

D

T/2-spaced
Feed

Forward

Adaptive
Equalizer

Timing
Recovery

Coarse
Carrier

Recovery

NCO

Phase
Error

NCO

Symbol
à Bits

Errors

Symbol
Decisions

Backend
Carrier

Recovery

CLK Oscillator

Demodulated
Bits

e
-j2nft

e
-j2nft

e
-j2nft

x936_01_042006

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

QAM Demodulator

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 2

R

one of them is that it must satisfy the Nyquist requirement of being at least twice as high as the
highest frequency in the (baseband) signal. Since this SDR demodulator is intended to receive
signals of different bandwidths, the sampling frequency must be greater than or equal to twice
the widest bandwidth signal of interest. Since the adaptive equalizer in Figure 1 normally
operates on an input that is sampled at twice the symbol rate of the signal, there is a
requirement to decimate the signal from the input sample rate to twice the symbol rate. A
diagram zooming into this detail is shown in Figure 2.

If the ADC samples the signal at fs and must enter the adaptive equalizer block at 2*fsym, then
the resampler block must decimate (digitally lower the sample rate) the signal by a factor of
D = fs / (2*fsym). When D is an integer, the problem is fairly straightforward. However, in general,
D will not be an integer. For a demodulator designed for a particular signal bandwidth, the
sample rate, fs, can be chosen such that D is an integer. However, for a demodulator designed
to support a variety (or a continuum) of signal bandwidths, D will be some fractional number
greater than or equal to 1 (up to the designed limit). The maximum value that D is designed to
take on dictates the bandwidth of the narrowest signal that can be demodulated. Whereas,
when D is equal to 1, no decimation occurs and the widest bandwidth signal is allowed to pass
through and be processed (in this case, the sample rate, fs, is equal to twice the symbol rate).

Not only will the decimation value (D), in general, be a fractional number, but it also needs to be
dynamically changed by the timing recovery block to resample the symbols at the proper time
instant (or phase), not just frequency. For example, when outputting two samples per symbol
from the resampler, one will ideally be at top dead center of the symbol, and one will be at the
transition sample between symbols.

The remainder of this application note reviews polyphase decimating filter architectures and
discusses the fractional rate decimator and its Xilinx System Generator 8.1i implementation
and results.

Figure 2: Rate Change Detail

ADC
Fractional
Resampler

D

T/2-spaced
Feed

Forward

Adaptive
Equalizer

Timing
Recovery

Coarse
Carrier

Recovery

NCO

e-j2πft

CLK Oscillator
Errors

Analog IF
Signal

fs

fs 2fsymfs fsym

x936_02_042006

http://www.xilinx.com

Polyphase Decimating Filter Architectures

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 3

R

Polyphase
Decimating
Filter
Architectures

Before describing the fractional rate decimating filter, it is helpful to review decimating filters in
general and polyphase decimating filters in particular.(1) The two basic operations involved in
decimation are filtering and downsampling as shown in Figure 3.

The signal’s bandwidth must first be limited to half the sampling rate (π) divided by the
decimation rate, D, otherwise aliasing occurs after downsampling. The downsampling step
discards every D-1 samples (keeps every Dth sample), which reduces the output rate by a
factor of D.

Note that in Figure 3, the low pass filter that limits the bandwidth, which can sometimes be quite
long due to stringent image rejection requirements, operates at the input sample rate (the high
rate), but only every Dth output of the downsampler is kept for follow on processing. So, the filter
is performing calculations that are simply discarded. It is due to this inefficiency that polyphase
filters are generally used to implement rate changes.

The same decimation by a factor of D (D is an integer for this example) operation can be
implemented in a polyphase architecture by breaking the N-tap low pass filter in Figure 3 into D
parts (or phases), each with N/D taps (if N is not evenly divisible by D, then pad with zero taps).
This architecture is shown in Figure 4.

Each of the subfilters in Figure 4 is created by taking every Dth tap of the original filter and is
N/D taps long. For example, if decimating by 4 and the decimation filter is 16 taps long, h0 is
made up of taps 0, 4, 8, and 12. Likewise h1 would be taps 1, 5, 9, and 13 of the original 16 tap
filter, and so on.

Note that each of the subfilters in Figure 4 now only operates at 1/Dth the input sample rate, but
there are D of them. Since each of the subfilters only operates at 1/Dth the input sample rate, a
single FIR filter structure (that is N/D taps long) can be operated at the full input sample rate,
but with the coefficients changing every cycle and accumulating the outputs for D cycles, this is
shown in Figure 5. As compared with the inefficient decimating filter of Figure 3, the polyphase
implementation cuts the computational workload (or hardware resources) down by a factor of D
(with the addition of a small amount of control logic required to properly sequence the stored
coefficients to the tap delay line).

This provides an efficient way of decimating by an integer factor, but how is decimating done by
a non-integer factor?

The classical way of performing rational ratio resampling is to upsample by an integer factor,
low pass filter the result to remove images, and then downsample by another integer factor.
This is shown in Figure 6. The polyphase partition of the interpolator has a dual form
(directional arrows reversed, input and output signals reversed, and summing junctions
replaced by nodes) to that of Figure 4. The resampling method in Figure 6 works fine for fixed
ratios, but is still inefficient, because interpolated samples are computed and then some of
them are discarded at the downsample block. The next section discusses a way to efficiently

1. Multirate Signal Processing for Communications Systems by fredric j. harris, published by Prentice Hall PTR, 2004,
is an excellent reference for all of the multi-rate signal processing details that are not covered here.

Figure 3: Basic Decimating Filter Operation

/D

D
fs fs/Dfs

Low Pass
Filter

Downsample

π
x936_03_040706

http://www.xilinx.com

Polyphase Decimating Filter Architectures

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 4

R

resample an input waveform for an arbitrary ratio (or fractional number) and be able to
continuously vary that ratio.

Figure 4: Polyphase Partition for Decimation Filter

Figure 5: Efficient Polyphase Filter Implementation

Figure 6: Rational Ratio Resampling Operation

y(nD)

fs/D

h0

h1

h2

hD-1

x(n)

fs

fs/D

x936_04_040706

h(n+(N/D-1)*D)h(n+0*D) h(n+1*D) h(n+2*D)

x(n+1)

Shift Regs. Shift Regs. Shift Regs. Shift Regs.

y(n)

Coefficient Registers (changed each cycle)

Tapped Delay Line for Data

Accumulate
for D Cycles

fs

fs/D

Shift Registers Store D Samples

n = 1 to D-1

x936_05_042006

Polyphase Filter

π /max(D, M)

D
fs Mfs/D

Low Pass
Filter

Downsample

M
Mfs

Upsample

Mfs

x936_06_042006

http://www.xilinx.com

Polyphase Decimating Filter Architectures

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 5

R

Polyphase Fractional Decimating Filters

To develop the fractional decimating filter architecture, first redraw Figure 5 slightly by adding
some detail and using the transposed form of the filter (instead of the transversal or tapped
delay line version). This is shown in Figure 7 for a four phase, four taps/phase implementation.
The transposed form of the filter is used to avoid the D length shift registers in Figure 5. If one
ultimately wants a variable and fractional decimation rate, the fixed, integral length shift register
do not work.

Some things to note about the filter structure in Figure 7 are that the data, x(n), comes into the
filter at the sample rate, fs, and is applied to all of the tap multipliers at the same time
(transposed form of FIR filter). The coefficients are cycled through their values at the sample
rate, but the indexes of the coefficients at any given time are separated by D, the decimation
rate, or 4 in the example. As an example, take the line that begins with h(12) in Figure 7 on the
left; reading across to the right are h(8), h(4), and h(0)––each coefficient index is separated by
4. The accumulators function at the input sample rate, but their output and that of the adder
chain is clocked (or clock enabled to be more precise) at the decimated, or output, rate.

What is not shown explicitly in Figure 7 is the address generation circuitry that selects the
proper coefficient from storage at the proper time. For this example, it is simply a 2-bit down
counter (to address h(0) – h(3)) for each multiplier’s local coefficient storage.

The architecture in Figure 7 can be used exactly as shown to decimate by a variable factor by
storing a larger number of filter taps and having the address generator down count by a factor
related to the decimation rate that is desired (the actual value is (N/tpp)/D, where N is the total
length of the filter, tpp is taps per phase, and D is the decimation rate). Fractional rates can be
accommodated by allowing the address generator (accumulator) to subtract fractional values
and to accumulate the remainder as the accumulator wraps around its max/min values.

Xilinx System Generator Fractional Decimator Design
Figure 8 shows a Xilinx System Generator™ model of a fractional decimator design that closely
matches the structure in Figure 7. This design allows continuous fractional decimation rate
changes while operating and is highly parameterized, including input bit width, coefficient bit
width, intermediate bit widths, and maximum decimation rate (the maximum decimation rate
discussed below is 128. However, the maximum decimation rate parameter can be changed to
1024 without significantly increasing the FPGA resources needed.).

Figure 7: Transposed 4 Phase Decimating Filter

z-1 z-1 z-1

x(n)

h(15)

h(14)

h(13)

h(12)

h(11)

h(10

h(9)

h(8)

h(7)

h(6)

h(5)

h(4)

h(3)

h(2)

h(1)

h(0)

acc acc acc acc

y(n)

fs

fs

fs/4 fs/4

fs/4

fs
Accumulate
for D Cycles

x936_07_042006

http://www.xilinx.com

Polyphase Decimating Filter Architectures

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 6

R

System Generator is a DSP design entry tool that works in conjunction with The Mathworks
MATLAB® and Simulink® tools. System Generator accelerates the entry, simulation, and
implementation of DSP designs by abstracting away many of the details of the low-level FPGA
design, while still giving the designer control over the implementation to ensure high
performance and low resource usage. After a design is entered and simulated using System
Generator, a bit and cycle accurate implementation (VHDL or Verilog) can be generated
automatically by clicking a button on the GUI. Complex DSP designs can be designed and
implemented in hours or days instead of weeks or months using alternative design
methodologies.

Figure 8 is the top-level design that contains the design under test (the decimator) and the input
sources and output instrumentation of the testbench. The L value input is analogous to the
desired decimation rate and is described in more detail in a few paragraphs below.

Figure 9 shows the top-level of the fractional decimator design, which consists of an address
generator and a filter block. The small amount of logic (blue blocks) that are not contained in
these two blocks simply changes the address generator output from an up counter to a down
counter (it was more efficient to turn an up counter into a down counter than to start with a down
counter).

The input and output signals that have Gateway blocks on them (yellow rectangles) translate
into ports (or pins if the design is the top-level FPGA design) on the generated output design.
The Gateway blocks translate between the floating point simulation environment of Simulink
(testbench) and the fixed-point implementation environment of System Generator and
delineate the portion of the design that will be implemented in an FPGA.

The output signals in Figure 9 that do not have Gateway blocks on them are simply internal
signals provided for debug and observation and do not turn into ports or pins on the generated
output design.

Figure 8: Top-Level System Generator Testbench

Sine wave
test input

L value
input

Instruments to observe signals
and performance

Resampler design
under test

http://www.xilinx.com

Polyphase Decimating Filter Architectures

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 7

R

Figure 10 illustrates the address generator circuit, which is simply a phase accumulator that is
set up to have a fractional as well as an integer portion. The accumulator continues to
accumulate the L value input (which is equal to 128 divided by the desired decimation rate for
this particular design) on each cycle. However, when it overflows or wraps, it generates a sync
signal that is used in the filter block and becomes the clock enable output (valid output
indicator) for the decimator. The integer portion of the accumulator is used in the filter block to
address the proper coefficients.

Figure 9: Top-level of Fractional Decimator Design

Filter block

Address generator
block

Figure 10: Coefficient Address Generation Block

Accumulator

Integer part of
accumulator used
for coefficient address

Overflow indicator used
as timing signal and
output clock enable

http://www.xilinx.com

Polyphase Decimating Filter Architectures

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 8

R

Figure 11 shows the overall filter block, which is made up of four two-tap blocks and some
individual registers and gates (blue blocks).

Figure 12 shows the detail of the two-tap block. This block consists of two single-port RAMs
that store the coefficients, a multiplier and accumulator for each tap, and an adder chain along
the bottom of the diagram. A single-port RAM block for each tap initialized with the filter
coefficients(1) can supply each multiplier with the proper coefficient. The accumulator
accumulates multiplier outputs for D (the decimation rate) cycles. Because D can be a
fractional number, the actual number of cycles can be higher or lower than D, but will average
out to D. Every component is clocked at the input rate (high rate) except for the capture register
in the accumulator and the adder chain, which are clock enabled at the decimated rate.

The entire design utilizes a single fast, input sample rate clock, and outputs decimated samples
along with a clock enable (valid output) to indicate which samples should be used for follow on
processing.

Figure 11: Filter Block

Two-tap blocks
make up 8-tap
filter section

1. Coefficient values and other parameters are initialized in the InitFcn callback under Model Properties. The filter
used can be any 1024 tap low pass filter that has a passband out to 2/128 of the input sampling rate. Using normal
MATLAB normalized cut-off frequencies, the filter cutoff would be 1/128.

http://www.xilinx.com

Polyphase Decimating Filter Architectures

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 9

R

When simulating the design, an oscilloscope in the testbench captures various test signals. For
this simulation run, an L value of 2.63 was used, which equates to a decimation factor of
128/2.63, or 48.6692. A screen shot of the signals on the oscilloscope is shown in Figure 13.
The top signal is a zoomed in portion of the input sine wave, the next lower signal is the
decimated output signal. Note that the decimated output signal is changing at a slower rate and
thus holds its value steady for many clock cycles.

The signal under the decimated output signal in Figure 13 is a zoomed in look at the top integer
values of the address generator output. Since 2.63 does not divide evenly into 128, the
accumulator overflows at slightly different values each period. The cycle that the accumulator
overflows is captured as a sync pulse or valid out in the lowest signal on the oscilloscope
screen shot. Because the accumulator does not overflow at the same point each period, the
valid out signal’s period dithers between the two nearest integers of the actual decimation rate,
48 and 49 in this example. The average period of the valid out signal is the fractional decimation
rate (i.e., it spends more time at a period of 49 than 48, in this example, to average out to
48.6692).

Figure 12: Two-Tap Block

Single-port RAMs used for
storing coefficients

Tap multipliers

Accumulators

Adder chain

http://www.xilinx.com

Performance Results

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 10

R

Performance
Results

The resampled output waveform fidelity is dependent upon a variety of factors including:

• the parameterized bit widths of the input data, the filter coefficients, and the partial sums in
the filter;

• the number of taps in the resampling filter (the more taps, the closer the final output value
is to the ideal sample point); and

• the desired decimation rate (or L value in the design example).

Table 1 was generated for a few decimation rates to give the reader a feel for the signal-to-noise
ratio (SNR) that can be expected. The table was generated by injecting a sine wave into the
fractional rate decimator for the different L values and observing the FFT of the output sine
wave. Data input was 10-bits, coefficients used were 16-bits, and partial sums in the filter were
quantized to 24-bits. The SNR was approximated by taking the difference in dB between the
peak of the tonal impulse and the highest spur or noise floor. Using this criterion, the input sine
wave itself was measured at about 82 dB SNR (4096 points quantized to 10-bits). So the
degradation due to the resampler implementation (implementation noise) is the difference
between 82 dB and the value shown in Table 1.

Figure 13: Decimator Test Signals Screenshot

Table 1: Output Signal Fidelity

L Value Equivalent Decimation Rate (128/L) SNR (dB)

1.0 128.0 46

1.1 116.36 48

64.0 2.0 76

127.9 1.00078 62

128.0 1.0 82

http://www.xilinx.com

Implementation Results

XAPP936 (v1.1) March 5, 2007 www.xilinx.com 11

R

The lower SNRs shown for the higher decimation rates (128 and 116.36) are attributable to
round-off noise in the numerous accumulation cycles at these rates. Widening the allowed
output bit width would improve these values. The lower decimation rates result in
commensurately higher SNRs due to fewer computations being performed. The SNR for
decimating at a rate of 1.00078 is lower than might be expected. This is because the ideal
coefficients to use are not present in memory and the closest ones are used (the address
generator truncates the ideal address to the nearest integer) instead. This causes a certain
amount of jitter, which shows up as a lower SNR (noisier output sine wave). Increasing the
number of taps in the filter would improve results for these situations.

Implementation
Results

Using a Spartan™-3 XC3S200-5 device, 100 MHz operation was achieved with no special
constraints while using only 8 embedded MULTs, 8 18 Kb block RAM blocks, and 378 slices.
When targeting the Virtex™-4 architecture, a Virtex-4 XC4VSX25 -10 device achieved
200 MHz operation while only using 17 DSP48 slices, 8 18 18Kb block RAM blocks, and 134
slices. Because the design has been implemented with generic multiplier and add blocks so
that any device may be targeted, optimal DSP48 mapping during the synthesis step is generally
not achieved.

To achieve near 400 MHz operation in a Virtex-4 device (or 450 MHz in a Virtex-5 device),
several areas of the design need to be changed slightly. The single-port RAM blocks should be
changed to have a latency of 2 on the output (2 output registers). The multiplier and
accumulator block should be combined into a single DSP48(E) with a separate capture register
on the output, using either a DSP48 primitive block or a DSP48 Macro block in the DSP folder
in System Generator. The adder chain adders and registers should be combined into a chain of
DSP48(E)s using the PCOUT--> PCIN routing. And, lastly, the address generator accumulator
needs to be floorplanned carefully for maximum speed. For more detailed information on using
the DSP48 slices and DSP48E slice, consult the XtremeDSP™ for Virtex-4 FPGAs User Guide
(UG073) and the Virtex-5 XtremeDSP User Guide (UG193), respectively.

Reference
Design Files

The fractional decimator design described in this application note as well as a complementary
fractional interpolator design can be downloaded at: xapp936.zip

The designs use parameters for input bit width, coefficient bit width, and intermediate results so
changing those values in the initialization script (coefficient values and other parameters are
initialized in the InitFcn callback under Model Properties) changes them globally in the design.
This allows the design to serve as a starting point and be tailored easily to meet system
requirements for different applications.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

06/27/06 1.0 Initial Xilinx release.

07/06/06 1.0.1 Changed the link to the Reference Design Files.

07/10/06 1.0.2 Corrected part number in Implementation Results.

03/05/07 1.1 Replaced Figure 8, Figure 11, and Figure 12. Revised paragraph under
Figure 12 and the “Implementation Results.” The reference design files
were updated. See the readme file in xapp936.zip.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/userguides/ug073.pdf
http://www.xilinx.com/bvdocs/userguides/ug193.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp936.zip
http://www.xilinx.com/bvdocs/appnotes/xapp936.zip

	Continuously Variable Fractional Rate Decimator
	Summary
	Overview
	QAM Demodulator
	Polyphase Decimating Filter Architectures
	Polyphase Fractional Decimating Filters
	Xilinx System Generator Fractional Decimator Design

	Performance Results
	Implementation Results
	Reference Design Files
	Revision History

