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Summary This application note focuses on the baseband demodulation of Quadrature Amplitude 
Modulation (QAM) signals and, more specifically, on the use of a fractional rate decimator 
block. This application note also reviews polyphase decimating filter architectures and 
discusses the fractional rate decimator, its Xilinx System Generator 8.1i implementation, and its 
results.

Overview The modern software-defined radio (SDR) system often must transmit and receive a variety of 
different digital waveforms. These waveforms might be different modulation formats 
(Quadrature Phase Shift Keying (QPSK), 16-QAM, etc.), different symbol rates (bandwidths), 
or even at different center frequencies (cellular band, Personal Communication Systems 
(PCS), band, unlicensed bands, etc.). Instead of building separate processing chains to deal 
with the many different waveforms that must be processed, a more hardware efficient method 
is to build a single processing chain that has enough programmable flexibility to process all 
required formats. 

QAM 
Demodulator

A basic block diagram of a candidate demodulator is shown in Figure 1.

The QAM demodulator shown in Figure 1 consists of an analog Radio Frequency (RF) section 
and a digital section (within dashed line). The chosen architecture is a passband sampling 
arrangement where the signal is RF down converted to a particular Intermediate Frequency 
(IF) and then sampled at a particular (constant) frequency for all supported signals. The sample 
rate clock that drives the Analog-to-Digital Converter (ADC) is also used to clock the digital 
processing block. There are a few requirements on the appropriate sampling frequency, and 
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Figure 1:  Passband Sampling QAM Demodulator
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one of them is that it must satisfy the Nyquist requirement of being at least twice as high as the 
highest frequency in the (baseband) signal. Since this SDR demodulator is intended to receive 
signals of different bandwidths, the sampling frequency must be greater than or equal to twice 
the widest bandwidth signal of interest. Since the adaptive equalizer in Figure 1 normally 
operates on an input that is sampled at twice the symbol rate of the signal, there is a 
requirement to decimate the signal from the input sample rate to twice the symbol rate. A 
diagram zooming into this detail is shown in Figure 2.

If the ADC samples the signal at fs and must enter the adaptive equalizer block at 2*fsym, then 
the resampler block must decimate (digitally lower the sample rate) the signal by a factor of 
D = fs / (2*fsym). When D is an integer, the problem is fairly straightforward. However, in general, 
D will not be an integer. For a demodulator designed for a particular signal bandwidth, the 
sample rate, fs, can be chosen such that D is an integer. However, for a demodulator designed 
to support a variety (or a continuum) of signal bandwidths, D will be some fractional number 
greater than or equal to 1 (up to the designed limit). The maximum value that D is designed to 
take on dictates the bandwidth of the narrowest signal that can be demodulated. Whereas, 
when D is equal to 1, no decimation occurs and the widest bandwidth signal is allowed to pass 
through and be processed (in this case, the sample rate, fs, is equal to twice the symbol rate).

Not only will the decimation value (D), in general, be a fractional number, but it also needs to be 
dynamically changed by the timing recovery block to resample the symbols at the proper time 
instant (or phase), not just frequency. For example, when outputting two samples per symbol 
from the resampler, one will ideally be at top dead center of the symbol, and one will be at the 
transition sample between symbols.

The remainder of this application note reviews polyphase decimating filter architectures and 
discusses the fractional rate decimator and its Xilinx System Generator 8.1i implementation 
and results.

Figure 2:  Rate Change Detail
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Polyphase 
Decimating 
Filter 
Architectures

Before describing the fractional rate decimating filter, it is helpful to review decimating filters in 
general and polyphase decimating filters in particular.(1) The two basic operations involved in 
decimation are filtering and downsampling as shown in Figure 3.

The signal’s bandwidth must first be limited to half the sampling rate (π) divided by the 
decimation rate, D, otherwise aliasing occurs after downsampling. The downsampling step 
discards every D-1 samples (keeps every Dth sample), which reduces the output rate by a 
factor of D. 

Note that in Figure 3, the low pass filter that limits the bandwidth, which can sometimes be quite 
long due to stringent image rejection requirements, operates at the input sample rate (the high 
rate), but only every Dth output of the downsampler is kept for follow on processing. So, the filter 
is performing calculations that are simply discarded. It is due to this inefficiency that polyphase 
filters are generally used to implement rate changes.

The same decimation by a factor of D (D is an integer for this example) operation can be 
implemented in a polyphase architecture by breaking the N-tap low pass filter in Figure 3 into D 
parts (or phases), each with N/D taps (if N is not evenly divisible by D, then pad with zero taps). 
This architecture is shown in Figure 4.

Each of the subfilters in Figure 4 is created by taking every Dth tap of the original filter and is 
N/D taps long. For example, if decimating by 4 and the decimation filter is 16 taps long, h0 is 
made up of taps 0, 4, 8, and 12. Likewise h1 would be taps 1, 5, 9, and 13 of the original 16 tap 
filter, and so on. 

Note that each of the subfilters in Figure 4 now only operates at 1/Dth the input sample rate, but 
there are D of them. Since each of the subfilters only operates at 1/Dth the input sample rate, a 
single FIR filter structure (that is N/D taps long) can be operated at the full input sample rate, 
but with the coefficients changing every cycle and accumulating the outputs for D cycles, this is 
shown in Figure 5. As compared with the inefficient decimating filter of Figure 3, the polyphase 
implementation cuts the computational workload (or hardware resources) down by a factor of D 
(with the addition of a small amount of control logic required to properly sequence the stored 
coefficients to the tap delay line).

This provides an efficient way of decimating by an integer factor, but how is decimating done by 
a non-integer factor? 

The classical way of performing rational ratio resampling is to upsample by an integer factor, 
low pass filter the result to remove images, and then downsample by another integer factor. 
This is shown in Figure 6. The polyphase partition of the interpolator has a dual form 
(directional arrows reversed, input and output signals reversed, and summing junctions 
replaced by nodes) to that of Figure 4. The resampling method in Figure 6 works fine for fixed 
ratios, but is still inefficient, because interpolated samples are computed and then some of 
them are discarded at the downsample block. The next section discusses a way to efficiently 

1.  Multirate Signal Processing for Communications Systems by fredric j. harris, published by Prentice Hall PTR, 2004, 
is an excellent reference for all of the multi-rate signal processing details that are not covered here.

Figure 3:  Basic Decimating Filter Operation
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resample an input waveform for an arbitrary ratio (or fractional number) and be able to 
continuously vary that ratio.

Figure 4:  Polyphase Partition for Decimation Filter

Figure 5:  Efficient Polyphase Filter Implementation

Figure 6:  Rational Ratio Resampling Operation

y(nD)

fs/D

h0

h1

h2

hD-1

x(n)

fs

fs/D

x936_04_040706

h(n+(N/D-1)*D)h(n+0*D) h(n+1*D) h(n+2*D)

x(n+1)

Shift Regs. Shift Regs. Shift Regs. Shift Regs.

y(n)

Coefficient Registers  (changed each cycle)

Tapped Delay Line for Data

Accumulate 
for D Cycles

fs

fs/D

Shift Registers Store D Samples

n = 1 to D-1

x936_05_042006

Polyphase Filter

π /max(D, M)

D
fs Mfs/D

Low Pass 
Filter

Downsample

M
Mfs

Upsample

Mfs

x936_06_042006

http://www.xilinx.com


Polyphase Decimating Filter Architectures

XAPP936 (v1.1) March 5, 2007 www.xilinx.com  5

R

Polyphase Fractional Decimating Filters

To develop the fractional decimating filter architecture, first redraw Figure 5 slightly by adding 
some detail and using the transposed form of the filter (instead of the transversal or tapped 
delay line version). This is shown in Figure 7 for a four phase, four taps/phase implementation. 
The transposed form of the filter is used to avoid the D length shift registers in Figure 5. If one 
ultimately wants a variable and fractional decimation rate, the fixed, integral length shift register 
do not work. 

Some things to note about the filter structure in Figure 7 are that the data, x(n), comes into the 
filter at the sample rate, fs, and is applied to all of the tap multipliers at the same time 
(transposed form of FIR filter). The coefficients are cycled through their values at the sample 
rate, but the indexes of the coefficients at any given time are separated by D, the decimation 
rate, or 4 in the example. As an example, take the line that begins with h(12) in Figure 7 on the 
left; reading across to the right are h(8), h(4), and h(0)––each coefficient index is separated by 
4. The accumulators function at the input sample rate, but their output and that of the adder 
chain is clocked (or clock enabled to be more precise) at the decimated, or output, rate.

What is not shown explicitly in Figure 7 is the address generation circuitry that selects the 
proper coefficient from storage at the proper time. For this example, it is simply a 2-bit down 
counter (to address h(0) – h(3)) for each multiplier’s local coefficient storage.

The architecture in Figure 7 can be used exactly as shown to decimate by a variable factor by 
storing a larger number of filter taps and having the address generator down count by a factor 
related to the decimation rate that is desired (the actual value is (N/tpp)/D, where N is the total 
length of the filter, tpp is taps per phase, and D is the decimation rate). Fractional rates can be 
accommodated by allowing the address generator (accumulator) to subtract fractional values 
and to accumulate the remainder as the accumulator wraps around its max/min values.

Xilinx System Generator Fractional Decimator Design
Figure 8 shows a Xilinx System Generator™ model of a fractional decimator design that closely 
matches the structure in Figure 7. This design allows continuous fractional decimation rate 
changes while operating and is highly parameterized, including input bit width, coefficient bit 
width, intermediate bit widths, and maximum decimation rate (the maximum decimation rate 
discussed below is 128. However, the maximum decimation rate parameter can be changed to 
1024 without significantly increasing the FPGA resources needed.). 

Figure 7:  Transposed 4 Phase Decimating Filter
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System Generator is a DSP design entry tool that works in conjunction with The Mathworks 
MATLAB® and Simulink® tools. System Generator accelerates the entry, simulation, and 
implementation of DSP designs by abstracting away many of the details of the low-level FPGA 
design, while still giving the designer control over the implementation to ensure high 
performance and low resource usage. After a design is entered and simulated using System 
Generator, a bit and cycle accurate implementation (VHDL or Verilog) can be generated 
automatically by clicking a button on the GUI. Complex DSP designs can be designed and 
implemented in hours or days instead of weeks or months using alternative design 
methodologies. 

Figure 8 is the top-level design that contains the design under test (the decimator) and the input 
sources and output instrumentation of the testbench. The L value input is analogous to the 
desired decimation rate and is described in more detail in a few paragraphs below.

Figure 9 shows the top-level of the fractional decimator design, which consists of an address 
generator and a filter block. The small amount of logic (blue blocks) that are not contained in 
these two blocks simply changes the address generator output from an up counter to a down 
counter (it was more efficient to turn an up counter into a down counter than to start with a down 
counter). 

The input and output signals that have Gateway blocks on them (yellow rectangles) translate 
into ports (or pins if the design is the top-level FPGA design) on the generated output design. 
The Gateway blocks translate between the floating point simulation environment of Simulink 
(testbench) and the fixed-point implementation environment of System Generator and 
delineate the portion of the design that will be implemented in an FPGA. 

The output signals in Figure 9 that do not have Gateway blocks on them are simply internal 
signals provided for debug and observation and do not turn into ports or pins on the generated 
output design.

Figure 8:  Top-Level System Generator Testbench
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Figure 10 illustrates the address generator circuit, which is simply a phase accumulator that is 
set up to have a fractional as well as an integer portion. The accumulator continues to 
accumulate the L value input (which is equal to 128 divided by the desired decimation rate for 
this particular design) on each cycle. However, when it overflows or wraps, it generates a sync 
signal that is used in the filter block and becomes the clock enable output (valid output 
indicator) for the decimator. The integer portion of the accumulator is used in the filter block to 
address the proper coefficients.

Figure 9:  Top-level of Fractional Decimator Design
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Figure 11 shows the overall filter block, which is made up of four two-tap blocks and some 
individual registers and gates (blue blocks). 

Figure 12 shows the detail of the two-tap block. This block consists of two single-port RAMs 
that store the coefficients, a multiplier and accumulator for each tap, and an adder chain along 
the bottom of the diagram. A single-port RAM block for each tap initialized with the filter 
coefficients(1) can supply each multiplier with the proper coefficient. The accumulator 
accumulates multiplier outputs for D (the decimation rate) cycles. Because D can be a 
fractional number, the actual number of cycles can be higher or lower than D, but will average 
out to D. Every component is clocked at the input rate (high rate) except for the capture register 
in the accumulator and the adder chain, which are clock enabled at the decimated rate.

The entire design utilizes a single fast, input sample rate clock, and outputs decimated samples 
along with a clock enable (valid output) to indicate which samples should be used for follow on 
processing.

Figure 11:  Filter Block
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1.  Coefficient values and other parameters are initialized in the InitFcn callback under Model Properties. The filter 
used can be any 1024 tap low pass filter that has a passband out to 2/128 of the input sampling rate. Using normal 
MATLAB normalized cut-off frequencies, the filter cutoff would be 1/128.
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When simulating the design, an oscilloscope in the testbench captures various test signals. For 
this simulation run, an L value of 2.63 was used, which equates to a decimation factor of 
128/2.63, or 48.6692. A screen shot of the signals on the oscilloscope is shown in Figure 13. 
The top signal is a zoomed in portion of the input sine wave, the next lower signal is the 
decimated output signal. Note that the decimated output signal is changing at a slower rate and 
thus holds its value steady for many clock cycles.

The signal under the decimated output signal in Figure 13 is a zoomed in look at the top integer 
values of the address generator output. Since 2.63 does not divide evenly into 128, the 
accumulator overflows at slightly different values each period. The cycle that the accumulator 
overflows is captured as a sync pulse or valid out in the lowest signal on the oscilloscope 
screen shot. Because the accumulator does not overflow at the same point each period, the 
valid out signal’s period dithers between the two nearest integers of the actual decimation rate, 
48 and 49 in this example. The average period of the valid out signal is the fractional decimation 
rate (i.e., it spends more time at a period of 49 than 48, in this example, to average out to 
48.6692).

Figure 12:  Two-Tap Block
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Performance 
Results

The resampled output waveform fidelity is dependent upon a variety of factors including:

• the parameterized bit widths of the input data, the filter coefficients, and the partial sums in 
the filter; 

• the number of taps in the resampling filter (the more taps, the closer the final output value 
is to the ideal sample point); and 

• the desired decimation rate (or L value in the design example). 

Table 1 was generated for a few decimation rates to give the reader a feel for the signal-to-noise 
ratio (SNR) that can be expected. The table was generated by injecting a sine wave into the 
fractional rate decimator for the different L values and observing the FFT of the output sine 
wave. Data input was 10-bits, coefficients used were 16-bits, and partial sums in the filter were 
quantized to 24-bits. The SNR was approximated by taking the difference in dB between the 
peak of the tonal impulse and the highest spur or noise floor. Using this criterion, the input sine 
wave itself was measured at about 82 dB SNR (4096 points quantized to 10-bits). So the 
degradation due to the resampler implementation (implementation noise) is the difference 
between 82 dB and the value shown in Table 1. 

Figure 13:  Decimator Test Signals Screenshot

Table  1:  Output Signal Fidelity

L Value Equivalent Decimation Rate (128/L) SNR (dB)

1.0 128.0 46

1.1 116.36 48

64.0 2.0 76

127.9 1.00078 62

128.0 1.0 82
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The lower SNRs shown for the higher decimation rates (128 and 116.36) are attributable to 
round-off noise in the numerous accumulation cycles at these rates. Widening the allowed 
output bit width would improve these values. The lower decimation rates result in 
commensurately higher SNRs due to fewer computations being performed. The SNR for 
decimating at a rate of 1.00078 is lower than might be expected. This is because the ideal 
coefficients to use are not present in memory and the closest ones are used (the address 
generator truncates the ideal address to the nearest integer) instead. This causes a certain 
amount of jitter, which shows up as a lower SNR (noisier output sine wave). Increasing the 
number of taps in the filter would improve results for these situations. 

Implementation 
Results

Using a Spartan™-3 XC3S200-5 device, 100 MHz operation was achieved with no special 
constraints while using only 8 embedded MULTs, 8 18 Kb block RAM blocks, and 378 slices. 
When targeting the Virtex™-4 architecture, a Virtex-4 XC4VSX25 -10 device achieved 
200 MHz operation while only using 17 DSP48 slices, 8 18 18Kb block RAM blocks, and 134 
slices. Because the design has been implemented with generic multiplier and add blocks so 
that any device may be targeted, optimal DSP48 mapping during the synthesis step is generally 
not achieved.

To achieve near 400 MHz operation in a Virtex-4 device (or 450 MHz in a Virtex-5 device), 
several areas of the design need to be changed slightly. The single-port RAM blocks should be 
changed to have a latency of 2 on the output (2 output registers). The multiplier and 
accumulator block should be combined into a single DSP48(E) with a separate capture register 
on the output, using either a DSP48 primitive block or a DSP48 Macro block in the DSP folder 
in System Generator. The adder chain adders and registers should be combined into a chain of 
DSP48(E)s using the PCOUT--> PCIN routing. And, lastly, the address generator accumulator 
needs to be floorplanned carefully for maximum speed. For more detailed information on using 
the DSP48 slices and DSP48E slice, consult the XtremeDSP™ for Virtex-4 FPGAs User Guide 
(UG073) and the Virtex-5 XtremeDSP User Guide (UG193), respectively.

Reference 
Design Files

The fractional decimator design described in this application note as well as a complementary 
fractional interpolator design can be downloaded at: xapp936.zip

The designs use parameters for input bit width, coefficient bit width, and intermediate results so 
changing those values in the initialization script (coefficient values and other parameters are 
initialized in the InitFcn callback under Model Properties) changes them globally in the design. 
This allows the design to serve as a starting point and be tailored easily to meet system 
requirements for different applications.

Revision 
History

The following table shows the revision history for this document. 
 

Date Version Revision

06/27/06 1.0 Initial Xilinx release.

07/06/06 1.0.1 Changed the link to the Reference Design Files.

07/10/06 1.0.2 Corrected part number in Implementation Results.

03/05/07 1.1 Replaced Figure 8, Figure 11, and Figure 12. Revised paragraph under 
Figure 12 and the “Implementation Results.” The reference design files 
were updated. See the readme file in  xapp936.zip.
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