© Copyright 2010–2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. [If applicable, insert relevant third-party sentence.] All other trademarks are the property of their respective owners.

DISCLAIMER
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Revision History
The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/22/10</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>12/20/10</td>
<td>2.0</td>
<td>Revised content to support ISE software, v12.1. Removed explicit instructions describing setup and operation on Duals 245 and 267. Added text and Appendix A to generalize instructions to apply to either Duals 101 and 123 or Duals 245 and 267. Revised Superclock-2 information in Connecting the GTP Transceivers and Reference Clocks, page 7. Revised Figure 1-1, page 6. Included Si570 initialization instructions in Starting the Clock Module, page 14. Added Figure 1-12, page 15. Added Regenerating IBERT Designs, page 20 through page 33.</td>
</tr>
<tr>
<td>01/19/11</td>
<td>3.0</td>
<td>Revised document to reflect ChipScope™ Pro software v12.3.</td>
</tr>
<tr>
<td>05/05/11</td>
<td>4.0</td>
<td>Revised links, software references, and figures containing screen captures to reflect ISE software v13.1. Updated the Si570 and Si5368 addresses and frequencies in Table 1-3, page 19.</td>
</tr>
</tbody>
</table>
Table of Contents

Revision History ... 2

SP623 IBERT Getting Started Guide

Overview .. 5
Requirements ... 5
Running the IBERT Demonstration ... 6
 Extracting the IBERT Demonstration Files ... 6
 Setting Up the SP623 Board ... 7
 Connecting the GTP Transceivers and Reference Clocks 7
 Running the IBERT Demonstration ... 9
 GTP Transceiver Clock Connections ... 9
 GTP TX/RX Connections ... 9
 Configuring the FPGA .. 10
 Setting Up the ChipScope Pro Analyzer Tool .. 12
 Viewing the GTP Transceiver Operation ... 15
 Stopping the IBERT Demonstration ... 18
 Repeating the IBERT Demonstration for the Remaining GTP Duals 18
Frequency Table .. 19

Regenerating IBERT Designs .. 20
 Source File Overview .. 20
 IBERT Design IP Components ... 21
 ibert_s6_xxx Module ... 21
 vio_sclk2_control Module ... 21
 Design Notes ... 22
 Recreating IBERT Module with CORE Generator 22
 Recompiling the Project ... 32

References .. 33

Warranty .. 34

Appendix A: Running the IBERT Demonstration on Duals 245 and 267

 GTP Transceiver Clock Connections ... 35
 GTP TX/RX Connections ... 35
 Switch SW3 Setting ... 36
 Project Selection .. 37
Overview

This document provides a procedure for setting up the SP623 Spartan®-6 FPGA GTP Transceiver Characterization Board to run the Integrated Bit Error Ratio Test (IBERT) demonstration. The designs that are required to run the IBERT demonstration are stored in the CompactFlash memory card that is provided with the SP623 board. The demonstration shows the capabilities of the Spartan-6 XC6SLX150T FPGA GTP transceivers.

The IBERT demonstration is divided into two designs included on the CompactFlash memory card. The first design tests the transceivers located on the top half of the FPGA (GTP Duals 101 and 123), the second design tests the transceivers on the bottom half of the FPGA (GTP Duals 245 and 267). This procedure describes the steps to test the top design. The bottom design is tested following the same series of steps with the changes described in Appendix A. The procedure consists of:

1. Extracting the IBERT Demonstration Files.
2. Setting Up the SP623 Board.
3. Connecting the GTP Transceivers and Reference Clocks.
4. Configuring the FPGA.
5. Setting Up the ChipScope Pro Analyzer Tool.
6. Viewing the GTP Transceiver Operation.

The SP623 board is described in detail in UG751, SP623 Spartan-6 FPGA GTP Transceiver Characterization Board User Guide.

Requirements

The equipment and software required to run the demonstration are:

- SP623 Spartan-6 FPGA GTP Transceiver Characterization Board including:
 - 12V DC power adapter
 - CompactFlash memory card containing the IBERT demonstration designs
 - GTP transceiver power supply module (installed on SP623 board)
 - SuperClock-2 module (installed on SP623 board)
 - 12 SMA to SMA cables
- One of these JTAG cables:
 - Platform Cable USB-II (DLC10)
 - Parallel IV Cable (PC4)
- Host PC or Linux system, with USB ports
Running the IBERT Demonstration

Extracting the IBERT Demonstration Files

The ChipScope Pro Software .cpj project files for the IBERT demonstration are located on the CompactFlash memory card that is provided with the SP623 board. They are also located online along with .bit files for both designs (as collection rdf0098_13-1.zip) at:

The .cpj files are used to load pre-saved MGT/IBERT and clock module control settings for the demonstration. These files must be copied to a working directory on the host computer. To copy the files from the CompactFlash memory card:

1. Connect the CompactFlash memory card to the host computer.

 Note: The CompactFlash memory card can be plugged into a host PC's PCMCIA interface using a PCMCIA adapter card.

2. Locate the file sp623.zip on the Compact Flash memory card. The ZIP file content is similar to the files shown in Figure 1-1.

3. Unzip the files to a working directory on the host computer.

![WinZip - sp623.zip](image)

Figure 1-1: ChipScope Software Project Files Included in the sp623.zip File
Setting Up the SP623 Board

Caution! The SP623 board can be damaged by electrostatic discharge (ESD). Follow standard ESD prevention measures when handling the board.

To set up the SP623 board:

1. Install the GTP transceiver power module:
 a. Plug the module into connectors J34 and J179.
 b. Remove DCPS ENABLE jumpers at J184 and J185 located on the SP623 board.
2. Verify the four SYSACE JTAG ENABLE jumpers are installed at locations J22, J23, J195, and J196 on the SP623 board.
3. Place a jumper across pins 1–2 of the JTAG FMC BYPASS header at J162.
4. Enable the 200 MHz LVDS system clock by placing two jumpers (P, N) across pins 1–3 and pins 2–4 of J188.
5. Verify there is a 30 MHz oscillator in the SYSTEM ACE CLK oscillator socket at location X1 on the SP623 board.
6. Enable the System ACE™ controller clock by placing the jumper on J4 to the ON position.
7. Insert the CompactFlash memory card into the CF card connector (U24) located on the underside of the SP623 board.
8. Install the SuperClock-2 module:
 a. Align the three metal standoffs on the bottom side of the module with the three mounting holes in the CLOCK MODULE interface of the SP623 board.
 b. Using three 4-40 x 0.25 inch screws, firmly screw down the module from the bottom of the SP623 board.
 c. On the SuperClock-2 module, place a jumper across pins 1–2 (VCCO) of the CONTROL VOLTAGE header, J18.

Connecting the GTP Transceivers and Reference Clocks

All GTP transceiver pins are connected to differential SMA connector pairs. The GTP transceivers are grouped into four sets of two (referred to as Duals) which share two differential reference clock pin-pairs. Figure 1-2 shows the SMA locations for the GTP transceiver Duals (Dual 101, Dual 123, Dual 245, and Dual 267) and their associated reference clocks (101 Clocks, 123 Clocks, 245 Clocks, and 267 Clocks).
Running the IBERT Demonstration

Note: The image in Figure 1-2 is for reference only and might not reflect the current revision of the board.

The SuperClock-2 module provides LVDS clock outputs for the GTP transceiver reference clocks in the IBERT demonstration. Figure 1-3 shows the location of the differential clock SMA connectors on the clock module which can be connected to the GTP transceiver reference clock SMAs on the SP623 board. The four SMA pairs labeled “CLKOUT” provide LVDS clock outputs from the Si5378 clock multiplier/jitter attenuator device on the clock module. The SMA pair labeled “Si570_CLK” provides LVDS clock output from the Si570 programmable oscillator on the clock module. For the IBERT demonstration, the output clock frequencies from both devices are preset to 156.25 MHz. For more information regarding the SuperClock-2 module, refer to [UG770, HW-CLK-101-SCLK2 SuperClock-2 Module User Guide](http://www.xilinx.com).

Figure 1-2: GTP Transceiver and Reference Clock SMA Locations

Figure 1-3: SuperClock-2 Module Output Clock SMA Locations
Running the IBERT Demonstration

This section describes running the IBERT demonstration on Duals 101 and 123.

For running the IBERT demonstration on Duals 245 and 267 refer to Repeating the IBERT Demonstration for the Remaining GTP Duals, page 18.

GTP Transceiver Clock Connections

Refer to Table 1-1 and use four SMA cables to connect the output clock SMAs from the SuperClock-2 module to the reference clock SMAs of GTP Duals 101 and 123 on the SP623 board. In other words, for each row in Table 1-1, connect the source SMA with its corresponding destination SMA. For example, connect CKOUT1_P (J5) to 101_REFCLK0_P (J59).

Note: Any one of the five differential output SMA clocks from the clock module can be used to source either REFCLK0_P|N or REFCLK1_P|N on the SP623 board. Output clocks from the Si5368 device, specifically CKOUT1_P|N and CKOUT2_P|N, are described here and throughout this document as an example.

Table 1-1: Reference Clock Connections for Duals 101 and 123

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperClock-2 Module</td>
<td>SP623 Board</td>
</tr>
<tr>
<td>Net Name</td>
<td>SMA Connector</td>
</tr>
<tr>
<td>CKOUT1_P</td>
<td>J5</td>
</tr>
<tr>
<td>CKOUT1_N</td>
<td>J6</td>
</tr>
<tr>
<td>CKOUT2_P</td>
<td>J7</td>
</tr>
<tr>
<td>CKOUT2_N</td>
<td>J8</td>
</tr>
</tbody>
</table>

Notes:
1. See Table A-1, page 35 for a listing of reference clock SMA connections for Duals 245 and 267.

GTP TX/RX Connections

Refer to Table 1-2 and use eight SMA cables to connect the transmitter SMAs to the receiver SMAs in GTP Duals 101 and 123. In other words, for each row in Table 1-2, connect the transmitter SMA with its corresponding receiver SMA. For example, connect 101_TX0_P (J53) to 101_RX0_P (J51) on the SP623 board.

Table 1-2: TX/RX Connections for Duals 101 and 123

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Name</td>
<td>SMA Connector</td>
</tr>
<tr>
<td>101_TX0_P</td>
<td>J53</td>
</tr>
<tr>
<td>101_TX0_N</td>
<td>J54</td>
</tr>
<tr>
<td>101_TX1_P</td>
<td>J57</td>
</tr>
<tr>
<td>101_TX1_N</td>
<td>J58</td>
</tr>
</tbody>
</table>
Running the IBERT Demonstration

The final SMA cable connections for Duals 101 and 123 are shown in Figure 1-4.

Note: The final SMA cable connections for Duals 245 and 267 are shown in Figure A-1, page 36.

Configuring the FPGA

The following set of instructions describe how to configure the FPGA using the CompactFlash memory card included with the board. The FPGA may also be configured through ChipScope analyzer or iMPACT using the .bit files located online (as collection rdf0098_13-1.zip) at:

![SMA Cable Connections for Dual 101 and 123 Transceivers and Clocks](image-url)

To configure from the CompactFlash memory card:

1. Plug the 12V output from the power supply into connector J122.
2. Connect the SP623 board to the host computer. Either of these cables may be used for this connection:
 - Platform Cable USB-II (DLC10)
 - Parallel IV Cable (PC4)

 Connect one end of the cable to the host computer. Connect the other end to the download cable connector (J1) on the SP623 board.
3. To run the IBERT demonstration on Duals 101 and 123, set the System Ace Controller Configuration Address switch SW3 to 000 as shown in Figure 1-5. The setting on SW3 determines which of the two bitstreams stored in the CompactFlash card configures the FPGA.

![Diagram of DIP Switch SW3 Settings For Duals 101 and 123](UG752_c1_05_112310)

Figure 1-5: DIP Switch SW3 Settings For Duals 101 and 123

Note: Set SW3 to 001 as shown in Figure A-2, page 37 if running the IBERT demonstration on Duals 245 and 267.

4. Apply power to the board by placing SW1 in the ON position. After a few seconds, the FPGA is configured and the Done LED (DS6) lights.

Setting Up the ChipScope Pro Analyzer Tool

1. Open the ChipScope Pro Analyzer tool and select **File → Open Project**.

2. When the Open Project window appears, navigate to the location on the host computer where the .cpj project files were extracted, select `sp623_top.cpj` (Duals 101 and 123) and click **Open** (Figure 1-6).

![Open Project Window](UG752_c1_07_060110)

Figure 1-6: Open Project Window

Note: The .cpj file loads pre-saved project settings for the demonstration including MGT/IBERT and clock module control parameters. For more information regarding MGT/IBERT settings, refer to UG029, *ChipScope Pro Software and Cores User Guide*.
3. Click the **Open Cable** button (Figure 1-7).

![Open Cable Button](UG752_c1_08_112310)

Figure 1-7: **Open Cable Button**

4. When the dialog box opens asking to set up the core with settings from the current project, click **Yes** (Figure 1-8).

![Core Settings Dialog Box](UG752_c1_09_112310)

Figure 1-8: **Core Settings Dialog Box**

5. When the project panel opens, verify the JTAG chain shows the devices listed in Figure 1-9.

![Project Panel](UG752_c1_10_112310)

Figure 1-9: **Project Panel**
Starting the Clock Module

The IBERT demonstration design uses a ChipScope VIO core to control the clocks on the SuperClock-2 module. The SuperClock-2 module features two clock-source components: An always-on Si570 crystal oscillator and an Si5368 jitter-attenuating clock multiplier. The IBERT demonstration uses the output from either device to clock the GTP transceivers.

1. In the project panel, double-click **VIO Console** (Figure 1-10).

2. Having selected the VIO Console, the clock source(s) for the GTP transceivers can be initialized. Do one or both of the following:

 a. If using the Si5368 device to source the GTP transceiver clocks (e.g. as described in Table 1-1, page 9), initialize the Si5378 device. Click the **Si5368 Start** button (Figure 1-11). A transition arrow flashes ON/OFF to the right of **Si5368 Done** when the command is complete.

 b. If using the Si570 crystal to source the GTP transceiver clocks, click the Si570 Start button (Figure 1-12). A transition arrow flashes ON/OFF to the right of **Si570 Done** when the command is complete.
Running the IBERT Demonstration

Note: The ROM address value for the Si5368 is preset to 60 to produce an output frequency of 156.25 MHz. Typing in a different address changes the frequency of the GTP transceiver reference clocks. A complete list of frequency options and their associated ROM addresses is provided in Table 1-3, page 19.

3. In the project panel, double-click IBERT Console (Figure 1-13).

Viewing the GTP Transceiver Operation

After completing step 3 in Starting the Clock Module, the IBERT demonstration is configured and running as indicated by the MGT/IBERT Settings tab within the IBERT Console.
1. Note the line rate is 3.125 Gb/s for all four GTP transceivers (MGT Link Status in Figure 1-14).
2. Note the GTP transmitter differential output swing is preset to 695 mV (0100) as shown in Figure 1-15.

Figure 1-15: GTP Transceiver TX Differential Output Swing
Running the IBERT Demonstration

3. Note the RX Bit Error Count as shown in Figure 1-16. For any channel that doesn’t automatically reset to 0.000E000, click the Reset button immediately below the RX Bit Error Count for that particular channel.

Stopping the IBERT Demonstration

To stop the IBERT demonstration:

1. Close the ChipScope Pro Analyzer tool.

 Note: Do not save changes to the project.

2. Remove power to the SP623 board by placing SW1 in the OFF position.

3. Remove the SMA cables from the SP623 board.

Repeating the IBERT Demonstration for the Remaining GTP Duals

To run the demonstration on Duals 245 and 267, follow the procedure described in Running the IBERT Demonstration, page 6, with the changes described here:

- Substitute the connections for Duals 245 and 267 listed in Table A-1 and Table A-2
- Set dip switch SW3 to 001 for Duals 245 and 267 (Figure A-2)
- Run the IBERT demonstration with sp623_bot.cpj (Figure A-3)

The final SMA cable connections for Duals 245 and 267 are shown in Figure A-1.

![Figure 1-16: RX Bit Error Count](X-Ref Target - Figure 1-16)
Frequency Table

Table 1-3 lists the addresses of the output frequencies of the Si570 and Si5360 programmable clock sources.

Table 1-3: Si570 and Si5368 Frequency Table

<table>
<thead>
<tr>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100GE/40GE/10GE</td>
<td>161.130</td>
<td>30</td>
<td>OBSAI</td>
<td>307.200</td>
<td>60</td>
<td>XAUI</td>
<td>156.250</td>
</tr>
<tr>
<td>1</td>
<td>Aurora</td>
<td>81.250</td>
<td>31</td>
<td>OBSAI</td>
<td>614.400</td>
<td>61</td>
<td>XAUI</td>
<td>312.500</td>
</tr>
<tr>
<td>2</td>
<td>Aurora</td>
<td>162.500</td>
<td>32</td>
<td>OC-48</td>
<td>19.440</td>
<td>62</td>
<td>XAUI</td>
<td>625.000</td>
</tr>
<tr>
<td>3</td>
<td>Aurora</td>
<td>325.000</td>
<td>33</td>
<td>OC-48</td>
<td>77.760</td>
<td>63</td>
<td>Generic</td>
<td>66.667</td>
</tr>
<tr>
<td>4</td>
<td>Aurora</td>
<td>650.000</td>
<td>34</td>
<td>OC-48</td>
<td>155.520</td>
<td>64</td>
<td>Generic</td>
<td>133.333</td>
</tr>
<tr>
<td>5</td>
<td>CE111</td>
<td>173.370</td>
<td>35</td>
<td>OC-48</td>
<td>311.040</td>
<td>65</td>
<td>Generic</td>
<td>166.667</td>
</tr>
<tr>
<td>6</td>
<td>CPRI</td>
<td>61.440</td>
<td>36</td>
<td>OC-48</td>
<td>622.080</td>
<td>66</td>
<td>Generic</td>
<td>266.667</td>
</tr>
<tr>
<td>7</td>
<td>CPRI</td>
<td>122.880</td>
<td>37</td>
<td>OTU-1</td>
<td>166.629</td>
<td>67</td>
<td>Generic</td>
<td>333.333</td>
</tr>
<tr>
<td>8</td>
<td>CPRI</td>
<td>153.630</td>
<td>38</td>
<td>OTU-1</td>
<td>333.257</td>
<td>68</td>
<td>Generic</td>
<td>533.333</td>
</tr>
<tr>
<td>9</td>
<td>CPRI</td>
<td>245.760</td>
<td>39</td>
<td>OTU-1</td>
<td>666.514</td>
<td>69</td>
<td>Generic</td>
<td>644.000</td>
</tr>
<tr>
<td>10</td>
<td>CPRI</td>
<td>491.520</td>
<td>40</td>
<td>OTU-1</td>
<td>666.750</td>
<td>70</td>
<td>Generic</td>
<td>666.667</td>
</tr>
<tr>
<td>11</td>
<td>Display Port</td>
<td>67.500</td>
<td>41</td>
<td>OTU-2</td>
<td>167.330</td>
<td>71</td>
<td>Generic</td>
<td>205.000</td>
</tr>
<tr>
<td>12</td>
<td>Display Port</td>
<td>81.000</td>
<td>42</td>
<td>OTU-2</td>
<td>669.310</td>
<td>72</td>
<td>Generic</td>
<td>210.000</td>
</tr>
<tr>
<td>13</td>
<td>Display Port</td>
<td>135.000</td>
<td>43</td>
<td>OTU-3</td>
<td>168.050</td>
<td>73</td>
<td>Generic</td>
<td>215.000</td>
</tr>
<tr>
<td>14</td>
<td>Display Port</td>
<td>162.000</td>
<td>44</td>
<td>OTU-4</td>
<td>174.690</td>
<td>74</td>
<td>Generic</td>
<td>220.000</td>
</tr>
<tr>
<td>15</td>
<td>Fibrechannel</td>
<td>106.250</td>
<td>45</td>
<td>PCIe</td>
<td>100.000</td>
<td>75</td>
<td>Generic</td>
<td>225.000</td>
</tr>
<tr>
<td>16</td>
<td>Fibrechannel</td>
<td>212.500</td>
<td>46</td>
<td>PCIe</td>
<td>125.000</td>
<td>76</td>
<td>Generic</td>
<td>230.000</td>
</tr>
<tr>
<td>17</td>
<td>Fibrechannel</td>
<td>425.000</td>
<td>47</td>
<td>PCIe</td>
<td>250.000</td>
<td>77</td>
<td>Generic</td>
<td>235.000</td>
</tr>
<tr>
<td>18</td>
<td>GigE</td>
<td>62.500</td>
<td>48</td>
<td>SATA</td>
<td>75.000</td>
<td>78</td>
<td>Generic</td>
<td>240.000</td>
</tr>
<tr>
<td>19</td>
<td>GigE</td>
<td>125.000</td>
<td>49</td>
<td>SATA</td>
<td>150.000</td>
<td>79</td>
<td>Generic</td>
<td>245.000</td>
</tr>
<tr>
<td>20</td>
<td>GigE</td>
<td>250.000</td>
<td>50</td>
<td>SATA</td>
<td>300.000</td>
<td>80</td>
<td>Generic</td>
<td>250.000</td>
</tr>
<tr>
<td>21</td>
<td>GigE</td>
<td>500.000</td>
<td>51</td>
<td>SATA</td>
<td>600.000</td>
<td>81</td>
<td>Generic</td>
<td>255.000</td>
</tr>
<tr>
<td>22</td>
<td>GPON</td>
<td>187.500</td>
<td>52</td>
<td>SDI</td>
<td>74.250</td>
<td>82</td>
<td>Generic</td>
<td>260.000</td>
</tr>
<tr>
<td>23</td>
<td>Interlaken</td>
<td>132.813</td>
<td>53</td>
<td>SDI</td>
<td>148.500</td>
<td>83</td>
<td>Generic</td>
<td>265.000</td>
</tr>
<tr>
<td>24</td>
<td>Interlaken</td>
<td>195.313</td>
<td>54</td>
<td>SDI</td>
<td>297.000</td>
<td>84</td>
<td>Generic</td>
<td>270.000</td>
</tr>
<tr>
<td>25</td>
<td>Interlaken</td>
<td>265.625</td>
<td>55</td>
<td>SDI</td>
<td>594.000</td>
<td>85</td>
<td>Generic</td>
<td>275.000</td>
</tr>
<tr>
<td>26</td>
<td>Interlaken</td>
<td>390.625</td>
<td>56</td>
<td>SMPTE435M</td>
<td>167.063</td>
<td>86</td>
<td>Generic</td>
<td>280.000</td>
</tr>
<tr>
<td>27</td>
<td>Interlaken</td>
<td>531.250</td>
<td>57</td>
<td>SMPTE435M</td>
<td>334.125</td>
<td>87</td>
<td>Generic</td>
<td>285.000</td>
</tr>
<tr>
<td>28</td>
<td>OBSAI</td>
<td>76.800</td>
<td>58</td>
<td>SMPTE435M</td>
<td>668.250</td>
<td>88</td>
<td>Generic</td>
<td>290.000</td>
</tr>
<tr>
<td>29</td>
<td>OBSAI</td>
<td>153.600</td>
<td>59</td>
<td>XAUI</td>
<td>78.125</td>
<td>89</td>
<td>Generic</td>
<td>295.000</td>
</tr>
</tbody>
</table>
Regenerating IBERT Designs

Source File Overview

The file rdf0100_13-1.zip contains the source files for both designs (SP623_top and SP623_bot). The .zip file is located at:

In addition to the two project directories containing the source files, a scripts folder containing the run_simple script is included. This script is required to recompile the design through the ISE tool chain.

To set up the source files:

1. Download rdf0100_13-1.zip to a working directory on the Linux System.
2. Unzip the files to the working directory.

The files for both designs are organized in the same project directory structure. The SP623_top content is shown as an example:

```
SP623_top/
  par/
    ibert_s6_top.ngc
    ibert_s6_top.ncf
    icon_s6_1.ncg
    i2c_sclk2_control.ngc
    top_par.ncd
    top.ncg
    top.ucf
    vio_s6_si84_so78.ngc

  src/
```

Table 1-3: Si570 and Si5368 Frequency Table (Cont’d)

<table>
<thead>
<tr>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Generic</td>
<td>300.000</td>
<td>103</td>
<td>Generic</td>
<td>365.000</td>
<td>116</td>
<td>Generic</td>
<td>430.000</td>
</tr>
<tr>
<td>91</td>
<td>Generic</td>
<td>305.000</td>
<td>104</td>
<td>Generic</td>
<td>370.000</td>
<td>117</td>
<td>Generic</td>
<td>435.000</td>
</tr>
<tr>
<td>92</td>
<td>Generic</td>
<td>310.000</td>
<td>105</td>
<td>Generic</td>
<td>375.000</td>
<td>118</td>
<td>Generic</td>
<td>440.000</td>
</tr>
<tr>
<td>93</td>
<td>Generic</td>
<td>315.000</td>
<td>106</td>
<td>Generic</td>
<td>380.000</td>
<td>119</td>
<td>Generic</td>
<td>445.000</td>
</tr>
<tr>
<td>94</td>
<td>Generic</td>
<td>320.000</td>
<td>107</td>
<td>Generic</td>
<td>385.000</td>
<td>120</td>
<td>Generic</td>
<td>450.000</td>
</tr>
<tr>
<td>95</td>
<td>Generic</td>
<td>325.000</td>
<td>108</td>
<td>Generic</td>
<td>390.000</td>
<td>121</td>
<td>Generic</td>
<td>455.000</td>
</tr>
<tr>
<td>96</td>
<td>Generic</td>
<td>330.000</td>
<td>109</td>
<td>Generic</td>
<td>395.000</td>
<td>122</td>
<td>Generic</td>
<td>460.000</td>
</tr>
<tr>
<td>97</td>
<td>Generic</td>
<td>335.000</td>
<td>110</td>
<td>Generic</td>
<td>400.000</td>
<td>123</td>
<td>Generic</td>
<td>465.000</td>
</tr>
<tr>
<td>98</td>
<td>Generic</td>
<td>340.000</td>
<td>111</td>
<td>Generic</td>
<td>405.000</td>
<td>124</td>
<td>Generic</td>
<td>470.000</td>
</tr>
<tr>
<td>99</td>
<td>Generic</td>
<td>345.000</td>
<td>112</td>
<td>Generic</td>
<td>410.000</td>
<td>125</td>
<td>Generic</td>
<td>475.000</td>
</tr>
<tr>
<td>100</td>
<td>Generic</td>
<td>350.000</td>
<td>113</td>
<td>Generic</td>
<td>415.000</td>
<td>126</td>
<td>Generic</td>
<td>480.000</td>
</tr>
<tr>
<td>101</td>
<td>Generic</td>
<td>355.000</td>
<td>114</td>
<td>Generic</td>
<td>420.000</td>
<td>127</td>
<td>Generic</td>
<td>485.000</td>
</tr>
<tr>
<td>102</td>
<td>Generic</td>
<td>360.000</td>
<td>115</td>
<td>Generic</td>
<td>425.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IBERT Design IP Components

The IBERT design IP consists of three main components:

- **ibert_s6_xxx**
 A four-channel IBERT core utilizing two reference clocks.
 - **ibert_s6_top** tests GTP Duals 101 and 123 located on the top half of the FPGA
 - **ibert_s6_bot** tests GTP Duals 245 and 267 located on the bottom half of the FPGA

- **vio_sclk2_control**
 A ChipScope Pro virtual I/O controller core for the SuperClock-2 module.

- **icon_s6_1**
 Single-channel Integrated Controller (ICON) core for Spartan-6 devices.

Note: ibert_s6_xxx use the BSCAN USER1 scan chain, icon_s6_1 uses the BSCAN USER2 scan chain.

An example design hierarchy is:

```vhdl
chipscope.v
i2c_sclk2_control_bb.v
ibert_s6_top_bb.v
top.v
top.xst
top.prj
vio_sclk2_control.v
```

ibert_s6_xxx Module

Both ibert_s6_top and ibert_s6_bot designs have their own individual module generated by the Xilinx CORE Generator™ v13.1 (using the Spartan-6 IBERT GTP core, v2.01.a) without the **Implement Design** option selected. The module features four GTP lanes (one lane equals: TXP, TXN, RXP, RXN), two reference clock inputs (REFCLK0, REFCLK1), and a 25 MHz system clock.

The example `top.v` file includes an IBUF and BUFG network, as well as an ODDR2 and OBUF to drive out and back into the design.

vio_sclk2_control Module

The `vio_sclk2_control.v` module provides a VIO core for controlling the SuperClock-2 module through the ChipScope Pro software. The `vio_sclk2_control.v` module features 84 synchronous inputs (14 free) and 78 synchronous outputs (12 free). No logic exists in this level because `vio_sclk2_control.v` is only a wrapper. The `i2c_sclk2_control` module instantiated at this level is a black-box HDL module and is provided as an ISE software v11.4 NGC file.
CLK50

The IBERT design uses a 25 MHz system clock to match the IBERT requirements. Using the same clock, the I²C interface runs at half its target clock frequency of 50 MHz with no impact on the functionality or performance of the design.

Design Notes

All files are built using ISE Design Suite, v13.1. The SP623 IBERT design uses a new methodology to combine an IBERT from the CORE Generator software with user logic. The vio_sclk2 Control module is configured with fixed values to reduce user error:

- **sclk_out[3]** - Si5368 RESET_B pin
 Connected to Logic 1 to avoid accidental reset of the Si5368 jitter-attenuating clock multiplier on the SuperClock-2 module.

- **pca0_ctrl[5:0]**
 Set to 0x05. Enables the SuperClock-2 module on the I²C bus only.

- **si570_idcode**
 Set to the idcode of the Si570 crystal oscillator on the SuperClock-2 module (0x55).

Recreating IBERT Module with CORE Generator

This procedure describes the steps to recreate the IBERT module for GTP transceiver Duals 101 and 123 (SP623_top) which are located on the top half of the FPGA. The IBERT module for GTP Duals 245 and 267 (SP623_bot) can be recreated following the same series of steps.

To recreate the IBERT module from CORE Generator, follow these steps on a Linux system on which ISE Design Suite v13.1 is installed.

1. Open a command window.
2. In the command window, navigate to the top-level directory where the IBERT source files are located. Source File Overview is described on page 20.
3. Open up CORE Generator by executing the following command:
   ```
   % coregen
   ```
4. When the Core Generator window appears on screen, click the New Project icon (highlighted in Figure 1-17).
5. Name the project `coregen_top.cgp` and click **Save** (Figure 1-18). Note that for the “SP623_bot” design, the project will be named `coregen_bot.cgp`.
6. In the Project Options window, under **Part**, select the parameters listed here:
 - Family: **Spartan6**
 - Device: **xc6slx150t**
 - Package: **fgg676**
 - Speed Grade: **-3**

 Figure 1-19 shows the correct settings.
7. In the Project Options window, click **Generation** and select **Verilog** for **Design Entry**, select **Structural** for **Preferred Simulation Model**, and uncheck the box for **ASY Symbol File**. Leave the other settings unchanged. Figure 1-20 shows the correct settings.

![Figure 1-20: Generation Options](image)

8. In the Project Options window, under **Advanced**, leave all settings unchanged. Figure 1-21 shows the correct settings.

![Figure 1-21: Advanced Options](image)

9. Click **OK** to close the Project Options window.
10. In the Xilinx Core Generator window under **IP Catalog** select:

 Debug & Verification →
 ChipScope Pro →
 IBERT Spartan6 GTP (ChipScope Pro - IBERT) 2.01.a

 Double-click the selected core as shown in **Figure 1-22**.

11. After page 1 of the IP customization window appears, edit the fields using the values listed here:
 - Component Name: `ibert_s6_top`
 - Max Rate (Gbps): **3.125**
 - REFCLK (MHz): **156.25**

 Note the name for the “SP623_bot” design would be “ibert_s6_bot.”

Figure 1-23 shows the correct settings.

After entering the changes to page 1, click **Next >** to continue to page 2.
12. After page 2 of the IP customization window appears, refer to Table 1-4 and select (check) the tile locations associated with GTP duals 101 and 123 shown in Figure 1-24. In the GTP1 REFCLK column, refer to Table 1-4 and choose the appropriate REFCLK0 associated with the tile location selected in the GUI (Figure 1-24). Note: The default settings in the GUI should already match the values listed in Table 1-4.

Note: To set up page 2 for GTP duals 245 and 267, refer to Table 1-4 for the appropriate dedicated reference clock pair associated with the GTP Dual of interest.

Table 1-4: GTP Dual Tile Locations and REFCLK Selections

<table>
<thead>
<tr>
<th>GTP Dual</th>
<th>Tile Location</th>
<th>GTP1 REFCLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>GTPA1_DUAL_X0_Y1</td>
<td>REFLCK0 X0Y1</td>
</tr>
<tr>
<td>123</td>
<td>GTPA1_DUAL_X1_Y1</td>
<td>REFLCK0 X1Y1</td>
</tr>
<tr>
<td>245</td>
<td>GTPA1_DUAL_X0_Y0</td>
<td>REFLCK0 X0Y0</td>
</tr>
<tr>
<td>267</td>
<td>GTPA1_DUAL_X1_Y0</td>
<td>REFLCK0 X1Y0</td>
</tr>
</tbody>
</table>
Regenerating IBERT Designs

After entering the changes to page 2, click **Next >** to continue to page 3.

13. Leave page 3 settings as they are. **Figure 1-25** shows the correct settings. Click **Next >** to continue to page 4.

Figure 1-24: IP Customization, Page 2

After entering the changes to page 2, click **Next >** to continue to page 3.

13. Leave page 3 settings as they are. **Figure 1-25** shows the correct settings. Click **Next >** to continue to page 4.
14. When page 4 of the IP customization window appears, select **Use External Clock Source** with the following parameters:

- **Frequency (MHz): 25**
- **Location: $**
- **Input Standard: LVCMOS25**

Figure 1-26 shows the correct settings.

After entering the changes to page 4, Click **Next >** to continue to page 5.
15. After page 5 of the IP customization window appears, uncheck the **Implement Design** box and click **Generate** (Figure 1-27).
16. A readme window for the `ibert_s6_top` core opens after core generation completes (Figure 1-28). Review the list of files created and click Close when finished. Close the Core Generator application as well.
Regenerating IBERT Designs

17. After the module has been compiled, copy the files to a working directory. In a Linux command window, execute the following commands from the top-level directory:

% cp ibert_s6_top.ngc SP623_top/par
% cp ibert_s6_top/example_design/ibert_s6_top_top.ucf SP623_top/par/ibert_s6_top.ncf

18. Using a text editor, open the .ncf file created in the previous step and delete the line:

 NET "IBERT_SYSCLOCK_P_IPAD" LOC = $ | IOSTANDARD = LVCMOS25;

19. The module is now ready to be used in your design (Note: Refer to ibert_s6_top.veo for information on the correct port names for instantiation). Move the module to the SP623_top/src directory by executing the following command:

% cp ibert_s6_top.v SP623_top/src/ibert_s6_top_bb.v

Recompiling the Project

To generate a new bitstream from the IBERT core created in the previous section (Recreating IBERT Module with CORE Generator, page 22), follow these steps:

1. Using the Linux system with ISE Design Suite v13.1, open a command window and navigate down to the SP623_top design directory:

% cd SP623_top

2. Synthesize the design with the following command:

% xst -ifn src/top.xst

Note: This function uses the src/top.prj file and places the result in the .par directory.

3. Change to the par directory:

% cd par

4. Run the ISE tool chain through to bitgen:
%/scripts/run_simple top xc6slx150t-fgg676-3

5. The resulting bitstream is named `top_par.bit`. Consider renaming the file to distinguish it from the other design (e.g. `ibert_top.bit`).

References

UG029, ChipScope Pro Software and Cores User Guide
UG751, SP623 Spartan-6 FPGA GTP Transceiver Characterization Board User Guide
UG770, HW-CLK-101-SCLK2 SuperClock-2 Module User Guide
Warranty

THIS LIMITED WARRANTY applies solely to standard hardware development boards and standard hardware programming cables manufactured by or on behalf of Xilinx (“Development Systems”). Subject to the limitations herein, Xilinx warrants that Development Systems, when delivered by Xilinx or its authorized distributor, for ninety (90) days following the delivery date, will be free from defects in material and workmanship and will substantially conform to Xilinx publicly available specifications for such products in effect at the time of delivery. This limited warranty excludes:

(i) engineering samples or beta versions of Development Systems (which are provided “AS IS” without warranty); (ii) design defects or errors known as “errata”; (iii) Development Systems procured through unauthorized third parties; and (iv) Development Systems that have been subject to misuse, mishandling, accident, alteration, neglect, unauthorized repair or installation. Furthermore, this limited warranty shall not apply to the use of covered products in an application or environment that is not within Xilinx specifications or in the event of any act, error, neglect or default of Customer. For any breach by Xilinx of this limited warranty, the exclusive remedy of Customer and the sole liability of Xilinx shall be, at the option of Xilinx, to replace or repair the affected products, or to refund to Customer the price of the affected products. The availability of replacement products is subject to product discontinuation policies at Xilinx. Customer may not return product without first obtaining a customer return material authorization (RMA) number from Xilinx.

THE WARRANTIES SET FORTH HEREIN ARE EXCLUSIVE. XILINX DISCLAIMS ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, AND ANY WARRANTY THAT MAY ARISE FROM COURSE OF DEALING, COURSE OF PERFORMANCE, OR USAGE OF TRADE. (2008.10)

Do not throw Xilinx products marked with the “crossed out wheelie bin” in the trash. Directive 2002/96/EC on waste electrical and electronic equipment (WEEE) requires the separate collection of WEEE. Your cooperation is essential in ensuring the proper management of WEEE and the protection of the environment and human health from potential effects arising from the presence of hazardous substances in WEEE. Return the marked products to Xilinx for proper disposal. Further information and instructions for free-of-charge return available at: http://www.xilinx.com/ehs/weee.htm.
Appendix A

Running the IBERT Demonstration on Duals 245 and 267

To run the demonstration on Duals 245 and 267, follow the procedure described in Running the IBERT Demonstration, page 6, with the changes described here:

- Substitute the connections for Duals 245 and 267 listed in Table A-1 and Table A-2
- Set dip switch SW3 to 001 for Duals 245 and 267 (Figure A-2)
- Run the IBERT demonstration with sp623_bot.cpj (Figure A-3)

GTP Transceiver Clock Connections

Table A-1: Duals 245 and 267 Reference Clock Connections

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperClock-2 Module</td>
<td>SP623 Board</td>
</tr>
<tr>
<td>Net Name</td>
<td>SMA Connector</td>
</tr>
<tr>
<td>CKOUT1_P</td>
<td>J5</td>
</tr>
<tr>
<td>CKOUT1_N</td>
<td>J6</td>
</tr>
<tr>
<td>CKOUT2_P</td>
<td>J7</td>
</tr>
<tr>
<td>CKOUT2_N</td>
<td>J8</td>
</tr>
</tbody>
</table>

GTP TX/RX Connections

Table A-2: Duals 245 and 267 TX/RX Connections

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Name</td>
<td>SMA Connector</td>
</tr>
<tr>
<td>245_TX0_P</td>
<td>J74</td>
</tr>
<tr>
<td>245_TX0_N</td>
<td>J75</td>
</tr>
<tr>
<td>245_TX1_P</td>
<td>J78</td>
</tr>
<tr>
<td>245_TX1_N</td>
<td>J79</td>
</tr>
<tr>
<td>267_TX0_P</td>
<td>J86</td>
</tr>
<tr>
<td>267_TX0_N</td>
<td>J87</td>
</tr>
</tbody>
</table>
Appendix A: Running the IBERT Demonstration on Duals 245 and 267

Table A-2: Duals 245 and 267 TX/RX Connections (Cont'd)

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Name</td>
<td>SMA Connector</td>
</tr>
<tr>
<td>267_TX1_P</td>
<td>J90</td>
</tr>
<tr>
<td>267_TX1_N</td>
<td>J91</td>
</tr>
</tbody>
</table>

The final SMA cable connections for Duals 245 and 267 are shown in Figure A-1.

Switch SW3 Setting

To run the IBERT demonstration on Duals 245 and 267, set the System Ace Controller Configuration Address switch SW3 to 001 as shown in Figure A-2.
Project Selection

Select `sp623_bot.cpj` and click Open (Figure A-3).

![Open Project Window](UG752_aA_03_112310)

Figure A-3: Open Project Window