
Introduction
The Asynchronous FIFO is a First-In-First-Out memory
queue with control logic that performs management of
the read and write pointers, generation of status flags,
and optional handshake signals for interfacing with the
user logic.

About This Revision
Version 6.1 is the final release of the Asynchronous
FIFO core. For new designs, Xilinx suggests you use the
FIFO Generator Logicore, which includes expanded
support for applications requiring independent (asyn-
chronous) or common (synchronous) read/write clock
domains. See FIFO Generator for detailed information.

Features
• Drop-in module for Virtex™, Virtex-E, Virtex-II™,

Virtex-II Pro™, Virtex-4™, Spartan-II™,
Spartan-IIE, and Spartan-3™ FPGAs

• Supports data widths up to 256 bits

• Supports memory depths of up to 65,535 locations

• Memory may be implemented in either
SelectRAM+ or Distributed RAM

• Fully synchronous and independent clock domains
for the read and write ports

• Supports FULL and EMPTY status flags

• Optional ALMOST_FULL and ALMOST_EMPTY
status flags

• Invalid read or write requests are rejected without
affecting the FIFO state

• Four optional handshake signals (WR_ACK,
WR_ERR, RD_ACK, RD_ERR) provide feedback
(acknowledgment or rejection) in response to write
and read requests in the prior clock cycle

• Optional count vector(s) provide visibility into
number of data words currently in the FIFO,
synchronized to either clock domain

• Uses relationally placed macro (RPM) mapping and
placement technology for maximum and
predictable performance

• Incorporates Xilinx Smart-IP™ technology for
utmost parameterization and optimum
implementation

• To be used with v6.3i or later of the Xilinx CORE
Generator™ system

0

Asynchronous FIFO v6.1

DS232 November 11, 2004 0 0 Product Specification

Figure Top x-ref 1

Figure 1: Core Schematic Symbol

Discontinued IP
DS232 November 11, 2004 www.xilinx.com 1
Product Specification

© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and
registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature, application,
or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require for your implemen-
tation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that this imple-
mentation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com/ipcenter/catalog/logicore/docs/fifo_generator.pdf
www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Asynchronous FIFO v6.1

2

Functional Description
The Asynchronous FIFO is a First-In-First-Out memory queue with control logic that performs man-
agement of the read and write pointers, generation of status flags, and optional handshake signals for
interfacing with the user logic. The individual read and write ports are fully synchronous (all opera-
tions qualified by a rising clock edge), but this FIFO does not require the read and write clocks to be
synchronized to each other.

FIFO status cannot be corrupted by invalid requests. Requesting a read operation while the EMPTY
flag is active will not cause any change in the current sate of the FIFO. Similarly, requesting a write
operation while the FULL flag is active will not cause any change in the current state of the FIFO. If
enabled, the RD_ERR and WR_ERR handshake signals will indicate the rejection of these invalid
requests.

In addition to the EMPTY, ALMOST_EMPTY, FULL, and ALMOST_FULL flags, a count vector can be
enabled to provide a more granular measure of the FIFO state. For the write domain the vector is
WR_COUNT[W:0], and for the read domain it is RD_COUNT[R:0]. The width of these vectors are user
programmable to provide easy generation of additional flags. For instance, a vector width of one cre-
ates a half-full flag; a width of two creates binary-encoded quadrant flags, and so on. In keeping with
the fully synchronous interface, the count vector can be synchronized to either the read or the write
clock domain, or two independent counts can be enabled, one for each clock domain.

Synchronization and Timing Issues
As previously stated, the read and write ports can be operated on independent asynchronous clock
domains. However, the user interface logic still must address synchronization issues. The core sche-
matic symbol, shown in Figure 1, divides the signals according to their appropriate clock
domains—write on the top half, read on the bottom. All signals, either input or output, are synchro-
nous to one of the two clocks, with the exception of AINIT, which performs an asynchronous reset of
the entire FIFO. On the write side, the control (WR_EN) and data input (DIN) are sampled by the rising
edge of WR_CLK and should be synchronous to the WR_CLK. For the read side the read control
(RD_EN) should be synchronous to the RD_CLK and the output data (DOUT) is valid after the subse-
quent rising edge of RD_CLK. All status outputs are synchronous to their respective clock domains and
should be sampled only by logic operating on a synchronous clock. FIFO performance can be effec-
tively constrained and analyzed by placing the desired clock PERIOD constraints on both the WR_CLK
and RD_CLK source signals.

WR_CLK and RD_CLK are always rising edge active for the FIFO core. They can be made falling edge
active (relative to the clock source) by inserting an inverter between the clock source and the FIFO’s
clock inputs.

Behavior of Status Signals
The activation of the AINIT, asynchronous initialization (reset), will force all four FIFO flags to the
active (high) state. On the first WR_CLK after the release of AINIT the FULL and ALMOST_FULL flags
will become inactive, indicating that the FIFO is now ready to accept write operations. EMPTY and
ALMOST_EMPTY are deactivated on a rising edge of the RD_CLK following the first and second
writes respectively. The ALMOST_EMPTY flag is active when the FIFO has one data word or is
EMPTY. The ALMOST_FULL flag is active when the FIFO has only one available memory location or
is FULL.

Discontinued IP
www.xilinx.com DS232 November 11, 2004
Product Specification

www.xilinx.com

Asynchronous FIFO v6.1

DS232 Nov
Product Sp
Optional handshake signals are provided to simplify user control logic interacting with the FIFO. The
WR_ACK and WR_ERR signals indicate acknowledgment or rejection of requested write operations.
Similarly, RD_ACK and RD_ERR signals indicate the acknowledgment or rejection of read operations.
Each of these control signals can be made active high or low from the GUI. Note that all of these hand-
shake signals are synchronous to their respective clock domains and indicate the acknowledgment or
rejection of requests during the prior rising clock edge. Because an acknowledgment or error response
depends on an active request (WR_EN or RD_EN), the ACK and ERR signals are not always the inverse
of each other. If no operation is requested, both the acknowledgment and the error signal will be inac-
tive during the subsequent clock period. For an example of expected signal sequencing, refer to the tim-
ing diagram shown in Figure 2.

The optional data count outputs (WR_COUNT and RD_COUNT) support the generation of user pro-
grammable flags. In the simplest case, selecting a width of one for a data count produces a half-full flag.
Like all other FIFO outputs, the counts are synchronized to their respective clock domains and should
be sampled only by logic operating on the same (or a synchronous) clock. The data count vectors have
clock latency and should not be used as substitutes for the FULL, ALMOST_FULL, EMPTY, or
ALMOST _EMPTY flags. The clock latency of the counts in their respective clock domains is one cycle.
For example, the WR_COUNT does not reflect the impact of a write operation performed as a result of
a request (WR_EN active) during the prior clock cycle. WR_COUNT and RD_COUNT values are not
guaranteed to produce a precise representation of the FIFO contents at a particular point in time. These
values should be used as a gauge to determine the FIFO status (see answer record 14518 for more informa-
tion). The latency for operations in the opposing clock domain can be up to three clock cycles. For exam-
ple, in the case of the WR_COUNT, read operations that may have been performed during the
immediate three prior RD_CLK periods will not be reflected in the data count vector. This latency
results from a design trade-off between clock frequency and count accuracy and is not as limiting as it
may at first appear.

Consider the following scenario of a FIFO configured depth of 63 and a write count of two bits
(WR_COUNT[1:0]).

Note that for this example:

Write_COUNT[1:0]=00: Indicates that the FIFO is less than 1/4 full and corresponds to the occupancy
range of (0:16). The upper bound is 16 and not 15 due to the write latency of 1 clock cycle.

Write_COUNT[1:0]=01: Indicates that the FIFO is between 1/4 full and 1/2 full and corresponds to the
occupancy range of (13:32). The lower bound is 13 and not 16 due to the read latency of 3 clock cycles.

Write_COUNT[1:0]=10: Indicates that the FIFO is between 1/2 full and 3/4 full and corresponds to the
occupancy range of (29-48).

Write_COUNT[1:0]=11: Indicates that the FIFO is between 3/4 full and full and corresponds to the
occupancy range of (45-63).

If the control logic needs to throttle back write operations based on the FIFO occupancy, it can use the
write count vector in the following way. As shown above, WR_COUNT[1:0] equal to 11 corresponds to
an occupancy greater than 45. As long as the user’s WR_COUNT is not 11, no more than 48 data words
(47 plus one for the write operation clock latency) are present in the FIFO. The user’s control logic is
assured that at least 15 (63-48) additional memory locations are available in the queue. There could be
up to three more locations because of recent read operations, but this only increases the available mem-
ory locations. In this scenario, at least 14 additional writes can be performed without causing the FULL
flag to transition to true.

Discontinued IP
ember 11, 2004 www.xilinx.com 3
ecification

www.xilinx.com

Asynchronous FIFO v6.1

4

Alternatively the control logic might want to wait for a fixed FIFO occupancy prior to performing a
burst read operation. In this case, read operations are suspended before the appropriate count is
reached. So for the same FIFO configuration, when the RD_COUNT transitions to 11, there are at least
47 data words in the FIFO. The write operation latency means that there can be as many as 51 words in
the FIFO, but the user’s read logic is guaranteed that at least 47 words are present. Read operations can
be initiated with the assurance that at least 47 assured reads can continue as long as the EMPTY flag is
inactive, indicating that data is available.

Pinout
Core signal names are shown in Figure 1 and described in Table 1.

Table 1: Core Signal Pinout

Name Direction Description

DIN[N:0] Input Data Input

WR_EN Input Write Enable (request)

WR_CLK Input Clock for write domain operations (rising edge)

RD_EN Input Read Enable (request)

RD_CLK Input Clock for read domain operations (rising edge)

AINIT Input Asynchronous reset of all FIFO functions, flags, and pointers

FULL Output
Full: no additional writes can be performed, synchronous to
WR_CLK

ALMOST_ FULL Output
Almost Full: Only one additional write can be performed before
FIFO is FULL, synchronous to WR_CLK

WR_
COUNT[W:0]

Output

Write Count: Count vector (unsigned binary) representing the
number of data words currently in FIFO, synchronized to
WR_CLK. If 2^(W+1) < [FIFO depth +1], the least significant bits
of count are truncated. (W=0 produces a half-full flag)

WR_ACK Output
Write Acknowledge: Handshake signal indicates that data was
written to the FIFO on the previous CLK edge while WR_EN was
active

WR_ERR Output

Write Error: Handshake signal indicates that no data word was
written to the FIFO on the previous CLK edge while WR_EN was
active. This is an indication that a write operation was attempted,
but the FIFO was Full.

DOUT[N:0] Output Data Output: Synchronous to RD_CLK

EMPTY Output
Empty: No additional reads can be performed, synchronous to
RD_CLK

ALMOST_ EMPTY Output
Almost Empty: Only one additional read can be performed before
FIFO is EMPTY, synchronous to RD_CLK.

Discontinued IP
www.xilinx.com DS232 November 11, 2004
Product Specification

www.xilinx.com

Asynchronous FIFO v6.1

DS232 Nov
Product Sp
CORE Generator Parameters
The main Core Generator parameterization values can be found in Table 2, and the parameter descrip-
tions are as follows:

• Component Name: The component name is used as the base name of the output files generated for
this module. Names must begin with a letter and must be composed from the following characters:
a to z, 0 to 9 and “_”.

• Memory Type: Select the appropriate radio button for the type of memory desired. Block Memory
implements the FIFO’s memory using SelectRAM+. Selecting the Distributed Memory radio button
will implement the FIFO memory using LUT-based dual-port memory.

• Input Data Width: Enter the width of the input data bus (also the width of the output data bus).
The valid range is 1 - 256.

• FIFO Depth: Select the available depth from the pull-down list. As one memory location has been
sacrificed in the interest of optimizing FIFO performance available depths are (2^N –1). N can be
any integer from 4 to 16, with additional restrictions based on the Data Width.

• Data Count: Two Data Counts, one for each clock domain, can be enabled by selecting the
appropriate radio button. Once selected, the corresponding count width dialog box becomes active.
Valid count widths are any integer from 1 to N (where 2^N = (FIFO Depth + 1). If an integer greater
than N is entered, it will turn red and the core generation will be inhibited until this error is
corrected.

• Create RPM: When this box is checked, the Asynchronous FIFO will be generated using
Relationally Placed Macros (RPMs). This means that the module will be generated with relative
location attributes attached. The FIFO will be produced with two (or three, if distributed memory
was selected) individual RPMs. A single RPM is not produced to allow the FIFO to support varying
footprints.

• Almost Full Flag: Generates an Almost Full signal, indicating that one additional write can be
performed before the FIFO is full.

• Almost Empty Flag: Generates an Almost Empty signal, indicating that one additional read can be
performed before the FIFO is empty.

RD_
COUNT [R:0]

Output

Read Count: Count vector (unsigned binary) representing the
number of data word currently in FIFO, synchronized to RD_CLK.
If (2^R+1)<(FIFO depth+1), the least significant bits of count are
truncated (R=0, produces a half-full flag)

RD_ACK Output
Read Acknowledge: Handshake signal indicates that data was
read from the FIFO and placed on the DOUT output pins on the
previous CLK edge while RD_EN was active

RD_ERR Output

Read Error: Handshake signal indicates that no data word was
read from the FIFO on the previous CLK edge while RD_EN was
active and subsequently data on DOUT output pins was not
updated. This is an indication that a read operation was attempted,
but the FIFO was Empty.

Table 1: Core Signal Pinout (Continued)

Name Direction Description

Discontinued IP
ember 11, 2004 www.xilinx.com 5
ecification

www.xilinx.com

Asynchronous FIFO v6.1

6

The optional handshaking control signals (acknowledge and/or error) can be enabled via the Hand-
shaking Options button. When selected, a popup dialog box will appear.

• Read Acknowledge Flag: Asserted active on the clock cycle after a successful read has occurred.
This signal, when selected, can be made active high or low through the GUI.

• Read Error Flag: Asserted active on the clock cycle after a read from the FIFO was attempted, but
not successful. This signal, when selected, can be made active high or low through the GUI.

• Write Acknowledge Flag: Asserted active on the clock cycle after a successful write has occurred.
This signal, when selected, can be made active high or low through the GUI.

• Write Error Flag: Asserted active on the clock cycle after a write to the FIFO was attempted, but not
successful. This signal, when selected, can be made active high or low through the GUI.

Parameter Values in XCO File
Names of XCO file parameters and their parameter values are identical to the names and values shown
in the GUI, except that underscore characters (_) are used instead of spaces. The text in an XCO file is
case insensitive.

The format for the XCO file should be as follows:

CSET <parameter> = <desired_option>

For example:

CSET component_name = my_fifo_name

Figure 2 shows the waveform output of the VHDL behavioral model for a FIFO with depth of 15. Ini-
tially, the FULL and ALMOST_FULL output flags are high, indicating that the FIFO is in a reset state
and the user should not write to the FIFO. When WR_EN is set to 1, the first write operation fails and
returns a WR_ERR because on that rising clock edge the FIFO is reporting FULL and can not be written
to.

Discontinued IP
www.xilinx.com DS232 November 11, 2004
Product Specification

www.xilinx.com

Asynchronous FIFO v6.1

DS232 Nov
Product Sp
The WR_COUNT and RD_COUNT outputs in Figures 2 and 3 report an estimated value of the number
of words in the FIFO relative to their respective clock domains. These outputs are expressed as the frac-
tion of the FIFO that is full, and can be used to generate user-threshold flags. Due to delays in the core,
these outputs can never be relied upon as an exact measure of the number of words in the FIFO.

Figure 3 shows the waveform output of the Verilog behavioral model for a FIFO with a depth of 15.
Unlike the VHDL model, it is a purely functional model. The actual waveform of the Verilog model in
Figure 3 looks quite different from the VHDL waveform in Figure 2, but they are functionally equiva-
lent from the point of view of either the read or write interface of the FIFO. As there is no delay in the
Verilog model, the effects of full, empty, read, or write can occur instantaneously.

Figure Top x-ref 2

Figure 2: Timing Diagram of Read and Write Operations for
FIFO VHDL Behavioral Model

Figure Top x-ref 3

Figure 3: Timing Diagram of Read and Write Operations for
FIFO Verilog Behavioral Model

AINIT
WR_CLK

DIN
WR_EN

WR_ACK
WR_ERR

FULL
ALMOST_FULL

WR_COUNT
RD_CLK

DOUT
RD_EN

RD_ACK
RD_ERR

EMPTY
MOST_EMPTY

RD_COUNT

AINIT
WR_CLK

DIN
WR_EN

WR_ACK
WR_ERR

FULL
ALMOST_FULL

WR_COUNT
RD_CLK

DOUT
RD_EN

RD_ACK
RD_ERR

EMPTY
LMOST_EMPTY

RD_COUNT

Discontinued IP
ember 11, 2004 www.xilinx.com 7
ecification

www.xilinx.com

Asynchronous FIFO v6.1

8

Table 2 provides the XCO file parameters and values and summarizes the GUI defaults.

Core Resource Utilization
The resource requirements of the asynchronous FIFO are highly dependent on the memory size, mem-
ory type, and the presence of optional ports. Resource utilization can be estimated by addition of the
requirements for the FIFO’s memory and control logic.

Table 3 lists the number of SelectRAM+ blocks required for the Virtex family to implement various
width and depth combinations when using the block memory implementation. Similarly, Table 4 lists
the number of SelectRAM+ blocks required for the Virtex-II family.

Table 2: Default Values and XCO File Values

Parameter XCO File Values Default GUI Setting

component_name
ASCII text starting with a letter and based
upon the following character set: a-z, 0-9,
and _

blank

memory_type
Keyword block, anything else generates
LUT RAM

block

input_data_width Integer in the range 1 to 256 16

fifo_depth
Integer in the range 15 to 65,535. Must be
equal to (2^N-1;, N = 4 to 16)

63

almost_full_flag One of the following keywords: true, false false

almost_empty_flag One of the following keywords: true, false false

write_acknowledge_flag One of the following keywords: true, false false

write_acknowledge_sense
One of the following keywords:
active_high, active_low

active_high

write_error_flag One of the following keywords: true, false false

write_error_sense
One of the following keywords:
active_high, active_low

active_high

read_acknowledge_flag One of the following keywords: true, false false

read_acknowledge_sense
One of the following keywords:
active_high, active_low

active_high

read_error_flag One of the following keywords: true, false false

read_error_sense
One of the following keywords:
active_high, active_low

active_high

write_count One of the following keywords: true, false false

write_count_width
Integer in the range 1 to N, where N is
determined by the fifo_depth

2

read_count One of the following keywords: true, false false

read_count_width
Integer in the range 1 to N, where N is
determined by the fifo_depth

2

create_rpm One of the following keywords: true, false false

Discontinued IP
www.xilinx.com DS232 November 11, 2004
Product Specification

www.xilinx.com

Asynchronous FIFO v6.1

DS232 Nov
Product Sp
Table 5 shows the approximate number of slices per bit for a distributed ram-based FIFO for the Virtex
family. Multiply this number by the data width to determine the approximate slice count for the mem-
ory. Note that resource utilization for distributed ram-based FIFO and control logic for Virtex-II will be
similar to that show for Virtex.

Control logic resource utilization is a function of the required addressing width N (N =
log2(fifo_depth+1) and the optional features enabled. The slice count calculation varies slightly,
depending on N being odd or even. For example, for the Virtex family:

For N even, slice count is:

- (N * 3.5) + 6 (Base)

- +(N * 0.5) + 2 (per almost flag)

- +(N * 2.0) + 1 (per data count)

- +(1) (for write handshaking)

- +(1) (for read handshaking))

 For N odd, slice count is:

- (N * 3.5) + 7.5 (Base)

- +(N * 0.5) + 1.5 (per almost flag)

- +(N * 2.0) + 2.0 (per data count)

- +(1) (for write handshaking)

- +(1) (for read handshaking))

Example: a 1023x8 SelectRAM+ based FIFO with all of the features enabled requires 2 blockRAMs (see
Table 3) and an additional 99 slices (N=10) for the control logic.

41+7+7+21+21+1+1 = 99 slices (N=10)

Table 3: Virtex and Virtex-E Select Ram+ Usage

Data
Width

FIFO Depth

15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535

1 1 1 1 1 1 1 1 1 1 2 4 8 16

2 1 1 1 1 1 1 1 1 2 4 8 16 32

3 1 1 1 1 1 1 1 2 3 6 12 24 48

4 1 1 1 1 1 1 1 2 4 8 16 32 64

5 1 1 1 1 1 1 2 3 5 10 20 40 80

6 1 1 1 1 1 1 2 3 6 12 24 48 96

7 1 1 1 1 1 1 2 4 7 14 28 56 112

8 1 1 1 1 1 1 2 4 8 16 32 64 128

9-12 1 1 1 1 1 2 3 5/6 9/12 18/24 36/48 72/96 144/192

13-16 1 1 1 1 1 2 4 7/8 13/16 26/32 52/64 104/128 208/256

17-32 2 2 2 2 2 3/4 5/8 9/16 17/32 34/64 68/128 136/256 N/S

Discontinued IP
ember 11, 2004 www.xilinx.com 9
ecification

www.xilinx.com

Asynchronous FIFO v6.1

10
Performance Benchmarking
To properly constrain the Asynchronous FIFO, place appropriate period constraints on the read
(RD_CLK) and write (WR_CLK) clocks. The Asynchronous FIFO benchmark results are shown in
Table 6 for Virtex, Table 7 for Virtex-E, and Table 8 for Virtex-II.

33-40 3 3 3 3 3 5 9/10 17/20 33/40 66/80 132/160 N/S N/S

41-48 3 3 3 3 3 6 11/12 21/24 41/48 82/96 164/192 N/S N/S

49-64 4 4 4 4 4 7/8 13/16 25/32 49/64 98/128 196/256 N/S N/S

65-128 5/8 5/8 5/8 5/8 5/8 9/16 17/32 33/64 65/128 130/256 N/S N/S N/S
129-192 9/12 9/12 9/12 9/12 9/12 17/24 33/48 65/96 129/192 N/S N/S N/S N/S
193-256 13/16 13/16 13/16 13/16 13/16 25/32 49/64 97/128 193/256 N/S N/S N/S N/S

Table 4: Virtex-II Select Ram+ Usage

Data
Width

FIFO Depth

15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535

1 1 1 1 1 1 1 1 1 1 1 1 2 4

2 1 1 1 1 1 1 1 1 1 1 2 4 8

3 1 1 1 1 1 1 1 1 1 2 3 6 11

4 1 1 1 1 1 1 1 1 1 2 4 8 15

5 1 1 1 1 1 1 1 1 2 3 5 9 18

6 1 1 1 1 1 1 1 1 2 3 6 11 22

7 1 1 1 1 1 1 1 1 2 4 7 13 25

8 1 1 1 1 1 1 1 1 2 4 8 15 29

9-12 1 1 1 1 1 1 1 1/2 3 5/6 9/12 16/22 32/43

13-16 1 1 1 1 1 1 1 2 4 7/8 13/16 24/29 47/57

17-32 1 1 1 1 1 1 1/2 2/4 5/8 9/16 17/32 31/57 N/S

33-40 1/2 1/2 1/2 1/2 1/2 1/2 2/3 4/5 9/10 17/20 33/40 N/S N/S

41-48 2 2 2 2 2 2 3 5/6 11/12 21/24 41/48 N/S N/S

49-64 2 2 2 2 2 2 3/4 6/8 13/16 25/32 49/64 N/S N/S

65-128 2/4 2/4 2/4 2/4 2/4 2/4 4/8 8/15 17/32 33/64 65/128 N/S N/S

129-192 4/6 4/6 4/6 4/6 4/6 4/6 8/11 15/22 33/48 65/96 129/192 N/S N/S

193-256 6/8 6/8 6/8 6/8 6/8 6/8 11/15 22/29 49/64 97/128 193/256 N/S N/S

Table 3: Virtex and Virtex-E Select Ram+ Usage (Continued)

Data
Width

FIFO Depth

15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535

Discontinued IP
www.xilinx.com DS232 November 11, 2004
Product Specification

www.xilinx.com

Asynchronous FIFO v6.1

DS232 Nov
Product Sp
Table 5: Virtex Distributed RAM Resource Utilization

FIFO_depth Resources Used Slice Estimate

15 2/0/0/1 2

31 6/0/0/1 3

63 12/2/0/1 6

127 24/4/2/1 11

255 49/8/4/1 22

Note: Resource Utilization (LUT/MUXF5/MUXF6/FD) for Distributed RAM FIFO Memory Only (per bit,
multiply by data width)

Table 6: Virtex Asynchronous FIFO Performance Benchmarking (SelectRAM+ Implementation)

PART FIFO Implementation

V50PQ240 255x16 no options 255x16 all options 1023X8 all options

-4 114 MHz – (8.8 ns) 113 MHz – (8.8 ns) 113 MHz – (8.8 ns)

-5 141 MHz – (7.1 ns) 125 MHz – (8.0 ns) 133 MHz - (7.5 ns)

-6 156 MHz – (6.4 ns) 151 MHz – (6.6 ns) 147 MHz - (6.8 ns)

Notes
1. These benchmark designs contain only one FIFO without any additional logic, so benchmark numbers approach the

performance ceiling rather than representing performance under typical user conditions. Highest frequencies will be
obtained by using the create RPM option or through custom floor planning.

2. Over constraining the FIFO (applying overly aggressive timing constraints) will degrade the achievable performance. For
example, applying a 6.0ns constraint to the 255x16 no options implementation (-6) will result in a placed and routed
implementation that is considerably slower than the 6.4ns shown in the table.

Table 7: Virtex-E Asynchronous FIFO Performance Benchmarking (SelectRAM+ Implementation)

PART FIFO Implementation

V50EPQ240 255x16 no options 255x16 all options 1023X8 all options

-6 178 MHz – (5.6 ns) 174 MHz – (5.7 ns) 172 MHz – (5.8 ns)

-7 192 MHz – (5.2 ns) 188 MHz – (5.3 ns) 188 MHz - (5.3 ns)

-8 196 MHz – (5.1 ns) 192 MHz – (5.2 ns) 196 MHz - (5.1 ns)

Notes
1. These benchmark designs contain only one FIFO without any additional logic, so benchmark numbers approach the

performance ceiling rather than representing performance under typical user conditions. Highest frequencies will be
obtained by using the create RPM option or through custom floor planning.

2. Over constraining the FIFO (applying overly aggressive timing constraints) will degrade the achievable performance.

Table 8: Virtex-II Asynchronous FIFO Performance Benchmarking (SelectRAM+ Implementation)

PART FIFO Implementation

2V250FG256 255x16 no options 255x16 all options 1023X8 all options

-5 233 MHz – (4.3 ns) 217 MHz – (4.3 ns) 213 MHz - (4.7 ns)

Notes
1. These benchmark designs contain only one FIFO without any additional logic, so benchmark numbers approach the

performance ceiling rather than representing performance under typical user conditions. Highest frequencies will be
obtained by using the create RPM option or through custom floor planning.

2. Over constraining the FIFO (applying overly aggressive timing constraints) will degrade the achievable performance.
3. Speed files used are preview.

Discontinued IP
ember 11, 2004 www.xilinx.com 11
ecification

www.xilinx.com

Asynchronous FIFO v6.1

12
Ordering Information
This core may be downloaded from the Xilinx IP Center for use with the Xilinx CORE Generator
System v6.3i and later. The Xilinx CORE Generator system is bundled with all Alliance Series Software
packages at no additional charge.
To order Xilinx software, please visit the Xilinx Silicon Xpresso Cafe or contact your local Xilinx sales
representative.
Information about additional Xilinx LogiCORE modules is available on the Xilinx IP Center.

Revision History

Date Version Revision

03/28/03 1.0 Revision History added to document.

5/21/04 1.1 Added support for Virtex-4 and v6.2i of the Xilinx CORE Generator system.

11/11/04 1.2
Updated document to indicate support for v6.3i of the Xilinx CORE Generator
system.

Discontinued IP
www.xilinx.com DS232 November 11, 2004
Product Specification

http://www.xilinx.com/ipcenter
http://toolbox.xilinx.com/cgi-bin/xilinx.storefront/

http://www.xilinx.com/company/contact.htm
http://www.xilinx.com/company/contact.htm
http://www.xilinx.com/ipcenter
www.xilinx.com

	Asynchronous FIFO v6.1
	Functional Description
	Synchronization and Timing Issues
	Behavior of Status Signals
	Pinout
	CORE Generator Parameters
	Parameter Values in XCO File
	Core Resource Utilization
	Performance Benchmarking
	Ordering Information
	Revision History

