Fabric Co-processor Bus (FCB) DS308 April 24, 2009 **Product Specification** #### Introduction The Fabric Co-processor Bus (FCB) connects one or more FPGA fabric accelerator slaves to the Auxiliary Processor Unit (APU) controller in a Virtex®-4 PowerPC® 405. The slave access decoding is based on the APU instruction code. Each slave must decode a unique set of instructions. #### **Features** - Single master support - Multiple slave support - Slave access selection based on instruction code - No arbitration between slaves - Implements the full Fabric Co-processor Module (FCM) interface of the APU controller - Developed for use with the FCB2FSL_bridge core, and the PPC405_virtex4 wrapper For more information on the PowerPC APU interface, see [Ref 1]. | LogiCORE™ IP Facts | | | | |-----------------------------|------------------------|---------------------------|--| | Core Specifics | | | | | Supported Device Family | Virtex [®] -4 | | | | Version of Core | fcb_v10 | v1.00a | | | Re | sources Used | | | | | Min | Max | | | Slices | N/A | N/A | | | LUTs | 0 | 214 ⁽¹⁾ | | | FFs | 0 | 0 | | | Block RAMs | 0 | 0 | | | Prov | rided with Core | | | | Documentation | Product S | pecification | | | Design File Formats | VH | HDL | | | Constraints File | N/A | | | | Verification | N/A | | | | Instantiation Template | N/A | | | | Reference Designs | No | one | | | Design [*] | Tool Requireme | ents | | | Xilinx Implementation Tools | ISE® 11. | 1 or higher | | | Verification | | I/A | | | Simulation | | cs® ModelSim®
or later | | | Synthesis | Х | ST | | | Support | | | | | Provided by Xilinx, Inc. | | | | ^{1.} Assuming three full feature FCB slaves. Actual size depends on number of slaves and the portion of the FCM interface signals they © 2004-2009 Xilinx, Inc., XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. All other trademarks are the property of their respective ## **Functional Description** The Fabric Co-processor Bus (FCB) is shown in Figure 1. The core signal names are listed and described in Table 1. Figure 1: Typical PowerPC System Using an Fabric Co-processor Bus ## Fabric Co-processor Bus I/O Signals Table 1: Fabric Co-processor Bus I/O Ports | Port Name | MSB:LSB | I/O | Description | |--------------------|--|-----|---| | FCB_CLK | | I | FCB Clock | | SYS_Rst | | I | External System Reset | | FCB_Rst | | 0 | FCB Reset | | M_DECODED | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMDECODED | | M_DECUDI | [0:((3*C_FCB_NUM_
MASTERS)-1)] | I | See [Ref1] description of signal APUFCMDECUDI | | M_DECUDIVALID | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMDECUDIVALID | | M_ENDIAN | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMENDIAN | | M_FLUSH | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMFLUSH | | M_INSTRUCTION | [0:((C_DATA_WIDTH*C_FC
B_NUM_MASTERS)-1)] | I | See [Ref1] description of signal APUFCMINSTRUCTION | | M_INSTRVALID | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMINSTRVALID | | M_LOADBYTEEN | [0:((C_DATA_WIDTH/8*
C_FCB_NUM_
MASTERS)-1)] | ı | See [Ref1] description of signal APUFCMLOADBYTEEN | | M_LOADDATA | [0:((C_DATA_WIDTH*
C_FCB_NUM_
MASTERS)-1)] | I | See [Ref1] description of signal APUFCMLOADDATA | | M_LOADDVALID | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMLOADDVALID | | M_OPERAND
VALID | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMOPERANDVALID | Table 1: Fabric Co-processor Bus I/O Ports (Cont'd) | Port Name | MSB:LSB | I/O | Description | |----------------------------|--|-----|---| | M_RADATA | [0:((C_DATA_WIDTH*
C_FCB_NUM_
MASTERS)-1)] | I | See [Ref1] description of signal APUFCMRADATA | | M_RBDATA | [0:((C_DATA_WIDTH*
C_FCB_NUM_
MASTERS)-1)] | I | See [Ref1] description of signal APUFCMRBDATA | | M_WRITEBACK
OK | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMWRITEBACKOK | | M_XERCA | [0:(C_FCB_NUM_
MASTERS-1)] | I | See [Ref1] description of signal APUFCMXERCA | | FCB_CR | [0:3] | 0 | See [Ref1] description of signal FCMAPUCR | | FCB_DCDCREN | | 0 | See [Ref1] description of signal FCMAPUDCDCREN | | FCB_DCDFORCE
ALIGN | | 0 | See [Ref1] description of signal FCMAPUDCDFORCEALIGN | | FCB_DCDFORCE
BESTEERING | | 0 | See [Ref1] description of signal FCMAPUDCDFORCEBESTEERING | | FCB_DCDFPUOP | | 0 | See [Ref1] description of signal FCMAPUDCDFPUOP | | FCB_DCDGPR
WRITE | | 0 | See [Ref1] description of signal FCMAPUDCDGPRWRITE | | FCB_DCDLDST
BYTE | | 0 | See [Ref1] description of signal FCMAPUDCDLDSTBYTE | | FCB_DCDLDS
TDW | | 0 | See [Ref1] description of signal FCMAPUDCDLDSTDW | | FCB_DCDLDS
THW | | 0 | See [Ref1] description of signal FCMAPUDCDLDSTHW | | FCB_DCDLDS
TQW | | 0 | See [Ref1] description of signal FCMAPUDCDLDSTQW | | FCB_DCDLDS
TWD | | 0 | See [Ref1] description of signal FCMAPUDCDLDSTWD | | FCB_DCDLOAD | | 0 | See [Ref1] description of signal FCMAPUDCDLOAD | | FCB_DCDPRI
VOP | | 0 | See [Ref1] description of signal FCMAPUDCDPRIVOP | | FCB_DCDRAEN | | 0 | See [Ref1] description of signal FCMAPUDCDRAEN | | FCB_DCDRBEN | | 0 | See [Ref1] description of signal FCMAPUDCDRBEN | | FCB_DCDSTORE | | 0 | See [Ref1] description of signal FCMAPUDCDSTORE | | FCB_DCDTRAP
BE | | 0 | See [Ref1] description of signal FCMAPUDCDTRAPBE | | FCB_DCDTRAP
LE | | 0 | See [Ref1] description of signal FCMAPUDCDTRAPLE | | FCB_DCDUP
DATE | | 0 | See [Ref1] description of signal FCMAPUDCDUPDATE | | FCB_DCDXERCA
EN | | 0 | See [Ref1] description of signal FCMAPUDCDXERCAEN | Table 1: Fabric Co-processor Bus I/O Ports (Cont'd) | Port Name | MSB:LSB | I/O | Description | |---------------------------|----------------------|-----|--| | FCB_DCDXEROV
EN | | 0 | See [Ref1] description of signal FCMAPUDCDXEROVEN | | FCB_DECODE
BUSY | | 0 | See [Ref1] description of signal FCMAPUDECODEBUSY | | FCB_DONE | | 0 | See [Ref1] description of signal FCMAPUDONE | | FCB_EXCEPTION | | 0 | See [Ref1] description of signal FCMAPUEXCEPTION | | FCB_EXE
BLOCKINGMCO | | 0 | See [Ref1] description of signal FCMAPUEXEBLOCKINGMCO | | FCB_EXECR
FIELD | [0:2] | 0 | See [Ref1] description of signal FCMAPUEXECRFIELD | | FCB_EXENON
BLOCKINGMCO | | 0 | See [Ref1] description of signal FCMAPUEXENONBLOCKINGMCO | | FCB_INSTRACK | | 0 | See [Ref1] description of signal FCMAPUINSTRACK | | FCB_LOADWAIT | | 0 | See [Ref1] description of signal FCMAPULOADWAIT | | FCB_RESULT | [0:C_DATA_WIDTH-1] | 0 | See [Ref1] description of signal FCMAPURESULT | | FCB_RESULT
VALID | | 0 | See [Ref1] description of signal FCMAPURESULTVALID | | FCB_SLEEP
NOTREADY | | 0 | See [Ref1] description of signal FCMAPUSLEEPNOTREADY | | FCB_FCM_
XERCA | | 0 | See [Ref1] description of signal FCMAPUXERCA | | FCB_XEROV | | 0 | See [Ref1] description of signal FCMAPUXEROV | | FCB_DECODED | | 0 | Slave side version of M_DECODED | | FCB_DECUDI | [0:2] | 0 | Slave side version of M_DECUDI | | FCB_DECUDI
VALID | | 0 | Slave side version of M_DECUDIVALID | | FCB_ENDIAN | | 0 | Slave side version of M_ENDIAN | | FCB_FLUSH | | 0 | Slave side version of M_FLUSH | | FCB_
INSTRUCTION | [0:C_DATA_WIDTH-1] | 0 | Slave side version of M_INSTRUCTION | | FCB_INSTRVALID | | 0 | Slave side version of M_INSTRVALID | | FCB_LOADBYTEE N | [0:C_DATA_WIDTH/8-1] | 0 | Slave side version of M_LOADBYTEEN | | FCB_LOADDATA | [0:C_DATA_WIDTH-1] | 0 | Slave side version of M_LOADDATA | | FCB_LOADD
VALID | | 0 | Slave side version of M_LOADDVALID | | FCB_OPERAND
VALID | | 0 | Slave side version of M_OPERANDVALID | | FCB_RADATA | [0:C_DATA_WIDTH-1] | 0 | Slave side version of M_RADATA | | FCB_RBDATA | [0:C_DATA_WIDTH-1] | 0 | Slave side version of M_RBDATA | | FCB_WRITE
BACKOK | | 0 | Slave side version of M_WRITEBACKOK | Table 1: Fabric Co-processor Bus I/O Ports (Cont'd) | Port Name | MSB:LSB | I/O | Description | |---------------------------|----------------------------------|-----|--| | FCB_APU_
XERCA | | 0 | Slave side version of M_XERCA | | FCB_ABORT
DECODE | | 0 | Signal to slaves that are still asserting the SI_DECODEBUSY that the instruction has already been successfully decoded and that they should deassert SI_DECODEBUSY | | SI_CR | [0:((4*C_FCB_NUM_
SLAVES)-1)] | I | Slave side version of signal FCB_CR. | | SI_DCDCREN | [0:(C_FCB_NUM_
SLAVES-1)] | - 1 | Slave side version of signal FCB_DCDCREN. | | SI_DCDFORCE
ALIGN | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDFORCEALIGN. | | SI_DCDFORCE
BESTEERING | [0:(C_FCB_NUM_
SLAVES-1)] | ı | Slave side version of signal FCB_DCDFORCEBESTEERING. | | SI_DCDFPUOP | [0:(C_FCB_NUM_
SLAVES-1)] | ı | Slave side version of signal FCB_DCDFPUOP. | | SI_DCDGPR
WRITE | [0:(C_FCB_NUM_
SLAVES-1)] | ı | Slave side version of signal FCB_DCDGPRWRITE. | | SI_DCDLDST
BYTE | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDLDSTBYTE. | | SI_DCDLDSTDW | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDLDSTDW. | | SI_DCDLDSTHW | [0:(C_FCB_NUM_
SLAVES-1)] | ı | Slave side version of signal FCB_DCDLDSTHW. | | SI_DCDLDSTQW | [0:(C_FCB_NUM_
SLAVES-1)] | ı | Slave side version of signal FCB_DCDLDSTQW. | | SI_DCDLDSTWD | [0:(C_FCB_NUM_
SLAVES-1)] | ı | Slave side version of signal FCB_DCDLDSTWD. | | SI_DCDLOAD | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDLOAD. | | SI_DCDPRIVOP | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDPRIVOP. | | SI_DCDRAEN | [0:(C_FCB_NUM_
SLAVES-1)] | ı | Slave side version of signal FCB_DCDRAEN. | | SI_DCDRBEN | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDRBEN. | | SI_DCDSTORE | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDSTORE. | | SI_DCDTRAPBE | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDTRAPBE. | | SI_DCDTRAPLE | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDTRAPLE. | | SI_DCDUPDATE | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDUPDATE. | | SI_DCDXERCA
EN | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDXERCAEN. | Table 1: Fabric Co-processor Bus I/O Ports (Cont'd) | Port Name | MSB:LSB | I/O | Description | |--------------------------|---|-----|--| | SI_DCDXER
OVEN | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DCDXEROVEN. | | SI_EXE
BLOCKINGMCO | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_EXEBLOCKINGMCO. | | SI_EXECRFIELD | [0:((3*C_FCB_NUM_SLAVE
S)-1)] | I | Slave side version of signal FCB_EXECRFIELD. | | SI_EXENON
BLOCKINGMCO | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_EXENONBLOCKINGMCO. | | SI_INSTRACK | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_INSTRACK | | SI_DECODE
BUSY | [0:(C_FCB_NUM_
SLAVES-1)] | ı | Slave side version of signal FCB_DECODEBUSY. Must be raised by slave in cycle after FCB_ABORTDECODE is asserted | | SI_DONE | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_DONE | | SI_EXCEPTION | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_EXCEPTION | | SI_LOADWAIT | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_LOADWAIT | | SI_RESULT | [0:((C_DATA_WIDTH*
C_FCB_NUM_SLAVES)-1)] | ļ | Slave side version of signal FCB_RESULT | | SI_RESULT
VALID | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_RESULTVALID | | SI_SLEEP
NOTREADY | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_SLEEPNOTREADY | | SI_XERCA | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_XERCA | | SI_XEROV | [0:(C_FCB_NUM_
SLAVES-1)] | I | Slave side version of signal FCB_XEROV | ## **Fabric Co-processor Bus Parameters** Table 2: Fabric Co-processor Bus Design Parameters | Parameter
Name | Feature/Description | Allowable Values | Default
Value | VHDL
Type | |-----------------------|-------------------------|---|------------------|--------------| | C_FCB_NUM_
MASTERS | Number of FCB Masters | 1 | 1 | integer | | C_FCB_NUM_
SLAVES | Number of FCB Slaves | 1–16 | 1 | integer | | C_DATA_WIDTH | FCB Data Bus Width | 32 | 32 | integer | | C_EXT_RESET_
HIGH | Level of external reset | 0 = Active low reset
1 = Active high reset | 1 | integer | #### **Allowable Parameter Combinations** There are no restrictions on parameter combinations. #### **Parameter - Port Dependencies** The parameter-port dependencies for the Fabric Co-processor Bus are listed in Table 3. Table 3: Fabric Co-processor Bus Parameter - Port Dependencies | Parameter Name | Ports (Port width depends on parameter) | |-----------------------|---| | C_FCB_NUM_
MASTERS | M_* | | C_FCB_NUM_SLAVES | SI_* | | C_DATA_WIDTH | *_INSTRUCTION, *_LOADDATA, *_LOADBYTEEN, *_RADATA, *_RBDATA, *_RESULT | | C_EXT_RESET_HIGH | none | ### **Fabric Co-processor Bus Register Descriptions** Not applicable. ## **Fabric Co-processor Bus Interrupt Descriptions** Not applicable. #### **Design Implementation** #### **Design Tools** The Fabric Co-processor Bus design is hand written. XST is the synthesis tool used for synthesizing the Fabric Co-processor Bus. The NGC netlist output from XST is then input to the Xilinx ISE tool suite for actual device implementation. ## **Target Technology** The intended target technology is an FPGA in one of the following families: Virtex-4. #### **Device Utilization and Performance Benchmarks** Not applicable. ## **Specification Exceptions** Not applicable. #### **Reference Documents** 1. UG018, PowerPC 405 Processor Block Reference Guide #### Support Xilinx provides technical support for this LogiCORE IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*. #### **Revision History** The following table shows the revision history for this document. | Date | Version | Revision | |----------|---------|------------------------------------| | 11/12/04 | 1.0 | Initial Xilinx release. | | 8/2/05 | 1.1 | Converted to the new DS template. | | 9/25/07 | 1.2 | Fixed parameter name C_DATA_WIDTH. | | 4/24/09 | 1.5 | Updated to support ISE 11.1. | #### **Notice of Disclaimer** 8 Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.