

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 21
PG006 December 18, 2013

Chapter 2: Product Specification

Version (0x0010) Register
Bit f ields of the Version Register facilitate software identif ication of the exact version of the
hardware peripheral incorporated into a system. The core driver can take advantage of this
Read-Only value to verify that the software is matched to the correct version of the
hardware.

SYSDEBUG0 (0x0014) Register
The SYSDEBUG0, or Frame Throughput Monitor, register indicates the number of frames
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Debug Tools in Appendix C for more information.

SYSDEBUG1 (0x0018) Register
The SYSDEBUG1, or Line Throughput Monitor, register indicates the number of lines
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Debug Tools in Appendix C for more information.

SYSDEBUG2 (0x001C) Register
The SYSDEBUG2, or Pixel Throughput Monitor, register indicates the number of pixels
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Debug Tools in Appendix C for more information.

ACTIVE_SIZE (0x0020) Register
The ACTIVE_SIZE register encodes the number of active pixels per line and the number of
active lines per frame. The lower half-word (bits 12:0) encodes the number of active pixels
per line. The upper half-word (bits 28:16) encodes the number of active lines per frame.

Supported values for both are between 32 and the values provided by the user in the GUI.
To avoid processing errors, restrict values written to ACTIVE_SIZE to the range supported
by the core instance.

Motion Transfer Function (MTF) Access and Programming
Registers MTF_Write (0x0100), MTF_Active (0x0104) allow access to and programming
of 16 programmable MTF locations. MTFs establish a relationship between pixel value
changes between the current and the previous frames, and the temporal low-pass f iltering
that occurs at each pixel location. For best results, the MTF table contents should be
matched to noise and motion content of the video sequence being processed.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=21

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 22
PG006 December 18, 2013

Chapter 2: Product Specification

The MANR core can store 16 MTFs simultaneously, each defined by 256 words of data, the
f irst 128 words for the Luma MTF, and the second 128 words for the Chroma MTF. The core
uses the MTF bank identif ied by bits 3-0 of register MTF_Active. The f irst 8 MTF banks
come pre-configured, with bank 0 pertaining to the MTF matched to a scene with little
motion and heavy noise load, address 7 pertaining to the MTF matched to a scene with lots
of motion and small noise load.

If none of the predefined Motion Transfer Functions f it the application, you can download
custom MTFs to any of the 16 banks. To avoid image tearing, MTF_Write and MTF_Active
should select different MTF banks.

Load the desired motion transfer function into the Motion Transfer bank through the
MTF_WRITE register. Loading the MTF involves writing one, some, or all of the 256 8-bit
unsigned coeff icient values within the range 0 through 255, specifying fixed point values in
the 0.0-0.996 range. A coeff icient of 0 specifies propagating the current value forward,
without any temporal f iltering (carried forward from the previous frame). Refer to
Chapter 3, Designing with the Core for more information.

All 16 MTF tables can be fully or partially rewritten using the MTF_Write (0x0100) register.
Bits 7-0 of register MTF_Write (0x0100) contain the data, in 8 bit, unsigned f ixed-point
format. The write address is encoded to bits 27-16. The lower 7 bits (22-16) of the address
identify the intra-MTF address. Bit 8 of the address (bit 23 of MTF_Write) selects between
the Luma (0) or the Chroma (1) tables. Bits 27-24 determine the MTF table to be written to.

Matching MTFs to Scene Content: The Frame_Noise and
Frame_Motion Registers
To help dynamically select the MTF best f itting the scenario, the core reports the measured
global motion and global noise content pertaining to the last frame processed. The values
provided are not normalized per pixel, instead represent the frame as a whole. Thus, for the
same noise variance and motion content, the larger the frame resolution, the larger the
resulting register values become.

Separation of motion and noise is controlled by the current MTF selected. Pixel variations
below the MTF= 0.5 are considered noise, above MTF=0.5 are considered motion. For two
identical consecutive frames, both indicators return 0. For two consecutive frames with no
motion but low variance noise, only the frame_noise register should return a non-zero
value.

Interrupt Subsystem
STATUS register bits can trigger interrupts so embedded application developers can
quickly identify faulty interfaces or incorrectly parameterized cores in a video system.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=22

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 23
PG006 December 18, 2013

Chapter 2: Product Specification

When the core is instantiated with an AXI4-Lite Control interface, the optional interrupt
request pin (IRQ) is present. Events associated with bits of the STATUS register can
generate a (level triggered) interrupt, if the corresponding bits of the interrupt enable
register (IRQ_ENABLE) are set. Once set by the corresponding event, bits of the STATUS
register stay set until the user application clears them by writing '1' to the desired bit
positions. Using this mechanism the system processor can identify and clear the interrupt
source.

Without the AXI4-Lite interface, you can still benefit from the core signaling error and
status events. By selecting the Enable INTC Port option, the core generates the optional
intc_if port. This vector of signals gives parallel access to the individual interrupt
sources, as shown in Table 2-10. Unlike STATUS and ERROR flags, intc_if signals are not
held. They stay asserted only while the corresponding event persists.

Table 2-10: INTC_IF Signal Functions

INTC_IF
Signal Name Function

0 FRAME_STARTED Indicates that the core has started processing a new frame.

1 FRAME_COMPLETE Indicates that processing of a frame has completed. This bit is
asserted when the core received all the pixel lines as programmed
by the FRAME_SIZE (0x0100) register.

2 AXI4_SLAVE_ERROR Indicates a framing error on either the previous or current
frame AXI4-Stream slave (input) interfaces.

3 Reserved Reserved, reads back as 0.

4 CURR_EOL_EARLY Indicates that s_axis_currframe_tlast was asserted too early with
respect to the values configured in the FRAME_SIZE register.
The expected position of this pulse is defined according to the
source video resolution settings.

5 CURR_EOL_LATE Indicates that s_axis_currframe_tlast was asserted
too late considering the previous TLAST pulse and the to the values
configured in the FRAME_SIZE register.

6 CURR_SOF_EARLY Indicates that s_axis_currframe_tuser was asserted too early with
respect to the values configured in the FRAME_SIZE register.
The expected position of this pulse is defined according to the
source video resolution settings.

6 CURR_SOF_LATE Indicates that s_axis_currframe_sof was asserted too late
considering the previous SOF pulse and the to the values
configured in the FRAME_SIZE register.

8 PREV_EOL_EARLY Indicates that s_axis_prevframe_tlast was asserted too early with
respect to the values configured in the FRAME_SIZE register.
The expected position of this pulse is defined according to the
source video resolution settings.

9 PREV_EOL_LATE Indicates that s_axis_prevframe_tlast was asserted
too late considering the previous TLAST pulse and the to the values
configured in the FRAME_SIZE register.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=23

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 24
PG006 December 18, 2013

Chapter 2: Product Specification

In a system integration tool, the interrupt controller INTC IP can be used to register the
selected INTC_IF signals as edge triggered interrupt sources. The INTC IP provides
functionality to mask (enable or disable), as well as identify individual interrupt sources
from software. Alternatively, for an external processor or MCU, you can custom build a
priority interrupt controller to aggregate interrupt requests and identify interrupt sources.

10 PREV_SOF_EARLY Indicates that s_axis_prevframe_tuser was asserted too early with
respect to the values configured in the FRAME_SIZE register.
The expected position of this pulse is defined according to the
source video resolution settings.

11 PREV_SOF_LATE Indicates that s_axis_prevframe_sof was asserted too late
considering the previous SOF pulse and the to the values
configured in the FRAME_SIZE register.

12 PIXEL_CNT_TC Indicates that the number of pixels per lines measured (number of
valid pixels received between EOL pulses) is larger than the
Horizontal Size specif ied in the Frame Maximum dimensions panel
of the GUI.

13 LINE_CNT_TC Indicates that the number of lines per frame measured (number
of EOL pulses between SOF pulses) is larger than the Vertical
Size specif ied in the Frame Maximum dimensions panel of the
GUI.

Table 2-10: INTC_IF Signal Functions (Cont’d)

INTC_IF
Signal Name Function

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=24

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 25
PG006 December 18, 2013

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to make designing with the
core easier.

Theory of Operation
The noise reduction algorithm is implemented with a recursive temporal f ilter that uses a
programmable motion transfer function (MTF) to control both the shape of the noise
reduction curve, as well as the “strength” of the noise reduction.

First, the difference between the current and previous frames are calculated. The difference
image is f iltered by a 2D averaging FIR filter, using a 3x5 kernel. The absolute value of the
low-pass f ilter output, the motion value, is affected to a greater extent by objects moving in
or out of the kernel (motion) than random noise.

This motion value is used as an index to the MTF look-up table. The Motion Transfer
Function reflects the probability density function of the noise superimposed on the stream.
Assuming Gaussian noise, the S-curve shape of the MTF intends to minimize the error that
motion is falsely characterized as noise.

Second, the value corresponding to the calculated motion value from the MTF is used as a
multiplier to scale the pixel-by-pixel difference value. The resulting value is summed with
the current frame pixel value, resulting in an output pixel that contains a percentage of the
previous frame and the current frame. This same output is then written to memory and
becomes the previous frame for the next cycle, thus forming a recursive f ilter. Consequently,
the entire input frame is f iltered in a recursive fashion, as shown in Figure 3-1.

For the MANR core, the above operation is carried out independently for luma and chroma
channels. Separate engines are included for each channel. The sub-sampled Cr and Cb
channels use this second engine. Switching between Cr and Cb is handled internally.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=25

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 26
PG006 December 18, 2013

Chapter 3: Designing with the Core

When the MANR core is used with an AXI4-Lite interface, the MTF function can be
reprogrammed using an arbitrary function. Refer to Motion Transfer Function (MTF) Access
and Programming in Chapter 2 for more information. Best results have been demonstrated
by using the monotonically decreasing portion of Gaussian or exponential functions. The
MANR core is initialized from the tool using an “exponential” shape for the MTF. This shape
is then attenuated to provide the different possible noise reduction strengths available. The
exponential shape provided has been shown to be effective at reducing noise while
minimizing “smearing” or “ghosting” caused by the recursive nature of the f ilter.

X-Ref Target - Figure 3-1

Figure 3-1: Motion Adaptive Noise Reduction

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=26

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 27
PG006 December 18, 2013

Chapter 3: Designing with the Core

The exponential transfer function is shown in Figure 3-2. The Y-axis denotes the amount of
recursion, and the X-axis denotes the amount of motion.

The function shown is monotonically decreasing. This implies that the amount of recursion
is inversely proportional to the amount of motion detected. For example, a large motion
value of 63 would result in an output of 0 from the MTF. This would result in none of the
previous pixel data being applied to the output data. A large motion value indicates that the
pixel changes are most likely not due to noise; therefore the output image should consist of
mostly or all of the current input image. Conversely, a small motion value results in a large
output value from the MTF, hence incurs more recursion which results in more smoothing
between the previous and current frames. Small changes in the pixel values from frame to
frame are more likely due to noise than motion, and hence more of the previous image
should be used to form the output image. The function also has a “knee” or “shelf” at the
beginning of the curve. This maximizes recursion in the area of the curve where noise is
most likely to occur, but the function rolls off quickly as the magnitude of the luma changes
increase (indicating that actual motion is present).

Using this same shape, several “strengths” of noise reduction can be realized by applying an
attenuation factor to the curve in Figure 3-2. This results in the same shape response, but
varying degrees of recursion for the same shape. Shown in Figure 3-3 are example
exponential MTFs with an attenuation of 0.75, 0.5, and 0.25 applied. The MANR core is
generated with 8 initial MTFs preloaded into banks 0-7, with bank 0 containing the
strongest, bank 7 containing the weakest setting. A strong MTF is well matched to a
scenario with little motion and heavy noise load. A weak MTF is matched to a scenario with

X-Ref Target - Figure 3-2

Figure 3-2: Exponential MTF

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=27

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 28
PG006 December 18, 2013

Chapter 3: Designing with the Core

much motion and small noise load. Selecting a particular strength initializes the MTF on
power-up with that setting. The power-up MTF can always be overwritten at run time.

IMPORTANT: The MTF tables specify feedback coefficients pertinent to measured pixel differences in
the range of 0 to 127 only. Any difference larger than 128 uses the value stored for 127. It is highly
recommended to set last value of the table to 0, or a value close to 0.

In Figure 3-3, the curves illustrate how the attenuation factor is applied.

The MANR core can store up to 16 MTF tables in memory. Only one table can be active in a
given frame period. See MTF Storage and Switching in Chapter 3 for details.

General Design Guidelines

MTF Storage and Switching
The MTF values are stored in block RAM internal to the MANR core. The block RAM can
store up to 16 separate MTF curves. Separate MTF curves are stored for Y (Luma) and C
(Chroma) channels.

Storing different MTFs can be useful in situations where the content being f iltered differs in
motion content. For example, a source might switch between a camera showing a f ixed
scene with little movement, to a more complex scene with many moving objects. One MTF

X-Ref Target - Figure 3-3

Figure 3-3: MTF Settings

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=28

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 29
PG006 December 18, 2013

Chapter 3: Designing with the Core

can be optimized for noise reduction, while another can balance noise reduction and
motion artifact from recursion. The exponential curve with a solid line shown in Figure 3-3
could be made active when the scene has little motion (because this curve will have more
recursion, and hence more smearing artifacts) while the “medium” curve could be used
when the material has a large motion content. Using the AXI4-Lite interface enables
switching between these curves on a frame-by-frame basis.

Xilinx provides eight pre-loaded MTF curves by default in the core. In addition, MTF values
can be updated on a frame-by-frame basis, allowing a software application to easily control
and optimize the MTF based on the expected source material and other conditions. To
provide information about the content being processed, the MANR core measures
estimated noise and motion content on a per-frame basis.

The application can periodically read out register values containing information on noise
and motion, and select the active MTF bank that best matches the scenario, or download a
custom MTF which is adapted to measurement data.

You can load custom MTFs into the remaining spaces in the block RAM, or overwrite the
existing ones. Once overwritten, the default MTF is not available again unless the FPGA is
reprogrammed. The MTF for each Y and C components consists of 128 discrete values that
define the MTF curve. The MTF must be monotonically decreasing. This means that for large
motion values, the MTF should output a small value; for small motion values, the MTF
should output a large value. In addition, for the register bypass mode to work, MTF value at
address 127 must be zero.

Input Interfaces
All video data is passed into the MANR core through two AXI4-Stream Video protocol
interfaces. The intended use of the MANR core is to simultaneously access two frames that
differ temporally by one frame period. These frames are referred to as the “current” and
“previous” frames.

The current frame is accessed through the S_AXIS_CURRFRAME AXI4-Stream interface. The
previous frame is accessed through the S_AXIS_PREVFRAME AXI4-Stream interface.
Typically, the data source for this interface is a frame buffer. The MANR output frame must
be fed back through external frame-buffer memory to become the previous frame during
the next frame period.

All input and output AXI4-Stream interfaces use 8-bit YC data, transmitted over the TDATA
of the input AXI4-Stream bus. Luma occupies bits 7:0; and chroma occupies bits 15:8. The
MANR uses internal FIFOs and the AXI4-Stream flow-control to synchronize incoming data
from these two interfaces.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=29

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 30
PG006 December 18, 2013

Chapter 3: Designing with the Core

Input Stream Synchronization
Ideally, the two input streams should be synchronized, so that the first valid data beat
provided to the MANR core on both the previous and current frame inputs start with the
Start of Frame (SOF, TUSER0) signal asserted.

If this condition is not met, the MANR core attempts to synchronize the channels based on
the assumption that the stream feeding the current frame input can not be held off, such as
a stream originating from a HDMI input or an image sensor, but the stream connected to
the previous frame input can be held off by back pressure.

While synchronizing, the MANR core always keeps TREADY asserted on the current frame
input to avoid upstream cores to the current frame input to saturate and drop data.

If SOF is not present for the f irst valid sample on the previous frame AXI4-Stream interface,
the MANR core asserts TREADY on the interface, and purges the stream until SOF is
captured. At this point, it deasserts TREADY, and holds up the previous frame input until
SOF is captured on the current input.

The core continues to monitor the synchronized behavior of the current and previous frame
inputs while processing frames. A similar synchronization mechanism is employed to
synchronize End-of-Line (EOL, TLAST) signals.

With these synchronization mechanisms at place, the MANR core can now recover from
cable disconnect, reconnect, or the system starting with a partial frame.

Output Interfaces
Video data is passed from the MANR core through three AXI4-Stream interfaces. Because
the MANR operates as a recursive temporal f ilter, the output frame must be written into
memory, where it is available as the previous frame during the next frame period. The
m_axis_mem AXI4-Stream interface should be used for writing the frame to the frame
buffer.

In addition to writing data back to memory, the same processed output video data is
available on the optional m_axis_output AXI4-Stream interface, for optional use by
downstream processing blocks.

A third AXI4-Stream output interface provides the motion data for optional use by
downstream processing blocks. It is available on the optional m_axis_motion
AXI4-Stream interface.

Figure 3-4 shows a typical use-case including the use of the AXI-VDMA block for external
memory access.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=30

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 31
PG006 December 18, 2013

Chapter 3: Designing with the Core

Interrupts

The MANR core provides an internal interrupt controller with masking and enable features.

The core can generate a FRAME_STARTED interrupt, indicating that it has f inished processing
the previous frame and started working on a new frame. This signal can be useful for
software to manage the core in the context of a larger pipeline.

Use Models
Two examples are provided in this section that show the core usage for noise reduction
only, and as the noise-reduction engine and motion-detection engine for a larger system.

Regardless of the application, the MANR core must have access to external memory using
the AXI VDMA core. The recursive nature of the filter requires that the current output frame
of the core be written to memory to be stored and used as the previous frame for the next
set of calculations.

In Figure 3-5 and Figure 3-6, thick lines are used to indicate video data flow in the system.

Use Model 1: Noise Reduction Application
Figure 3-5 shows an example where the MANR is used exclusively to reduce noise. In this
case, streaming video data (current frames) is propagated to the MANR core directly, while
previous frames are provided by the AXI-VDMA block.

X-Ref Target - Figure 3-4

Figure 3-4: Typical MANR Connectivity

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=31

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 32
PG006 December 18, 2013

Chapter 3: Designing with the Core

Video data originates at a video source (for example, an HDMI technology source or an
image sensor), with periodic timing, such as sync and blanking signals. The data might need
to be pre-processed with Xilinx color-space-converter or chroma re-sampler cores to
YCC422 format. Further processing can be undertaken before or after the MANR core.

The AXI-VDMA in Figure 3-5 handles the temporal feedback path. It takes the MANR output
for storage as the previous frame input. Also, the bidirectional AXI-VDMA feeds the
previous frame back into the core.

The timing controller shown in Figure 3-5 detects the video resolution, and make the
detection results available for the system processor. The system processor distributes the
resolution to the system components and programs, and initializes the frame-buffer
mechanism in the AXI-VDMA.

The AXI4-Stream to Video Out module, after being configured, waits for the streaming
video, then enables the Video Timing Controller (VTC) generator side to generate periodic
video output timing signals.

When a system processor is not available, it is also possible to create a MANR sub-system
to process video with pre-defined resolution. By configuring the constituent cores for no
AXI4-Lite interface, the GUI allows you to specify one supported video resolution.

Use Model 2: Noise Reduction and Motion Detection
In Figure 3-6, the MANR is used to calculate and provide motion (change) data and noise
reduction in a simple video processing system. The implicit link from the MANR to the
(generic) Image Processing block includes video data and pixel motion information which
can be used by this target block.

In this example, as in Figure 3-5, the MANR core noise-reduces the incoming video from a
camera, or other period video source. However, in Figure 3-6, the MANR core also provides
the video and motion data to a processing module through the AXI4-Stream output ports

X-Ref Target - Figure 3-5

Figure 3-5: Simple Noise Reduction

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=32

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 33
PG006 December 18, 2013

Chapter 3: Designing with the Core

m_axis_output and m_axis_motion for additional processing of the motion and image
data. Typical examples include an Image Characterization block (which makes use of the
video data and the motion data outputs) or a Video Scaler block (which only uses the video
data).

The MANR output streams can be passed to the Motion and Video Processing module(s)
either directly, or indirectly through VDMA interfaces. When the VDMA output is written to
memory, the a_axis_output stream may remain unused, because frame data has already
been written to memory through the mem_out stream. Another pair of VDMA read ports
can be used to read out motion and frame data from the frame buffer, isolating the input
frame rate from the output frame rate.

Clocking
The MANR core has one clock (aclk) that is used to clock the datapath of the entire core,
and one optional clock, s_axi_aclk , which is used as the clock source for the optional
AXI4-Lite interface.

MANR Control and Timing
After reset, when using the AX4-Lite Control interface, you should initialize the registers to
set up the frame size. Next, optional loading of an MTF can be done if the pre-loaded MTFs

X-Ref Target - Figure 3-6

Figure 3-6: Noise Reduction and Motion Processing

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=33

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 34
PG006 December 18, 2013

Chapter 3: Designing with the Core

are not sufficient. Prior to enabling the MANR, ensure that the current and previous frame
buffer locations are initialized with valid video data. This can be accomplished by enabling
the core and enabling bypass mode in the control register. After a full frame has been
committed to memory, as indicated by STATUS register bit 0, the bypass mode can be
disabled and normal operation can begin. Figure 3-7 illustrates MANR initialization.

Resets
The MANR core has one active-Low reset (aresetn) that resets the entire core. When using
AXI4-Lite, an internal active-High software reset is combined with this signal.

Protocol Description
The register interface is compliant with the AXI4-Lite interface. The video and motion input
and output interfaces are compliant with AXI4-Stream Video protocol.

X-Ref Target - Figure 3-7

Figure 3-7: MANR Initialization

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=34

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 35
PG006 December 18, 2013

Chapter 4

Customizing and Generating the Core
This chapter includes information on the Vivado® Design Suite to customize and generate
the core.

Vivado Integrated Design Environment
You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click on the selected IP or select the Customize IP command from the toolbar or
popup menu.

For details, see the sections, “Working with IP” and “Customizing IP for the Design” in the
Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7] and the “Working with the
Vivado IDE” section in the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 9].

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 10] for
detailed information. IP Integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the tcl console.

Note: Figures in this chapter are illustrations of the Vivado IDE. This layout might vary from the
current version.

Interface
The Xilinx® Motion Adaptive Noise Reduction (MANR) LogiCORE™ IP is easily configured
to meet the developer's specific needs through the Vivado Design Suite Graphical User
Interface (GUI). This section provides a quick reference to parameters that can be
configured at generation time. Figure 4-1 shows the parameters for the MANR core in the
Customize IP dialog box.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/support/documentation/sw_manuals_j/v=latest/ug910-vivado-getting-started.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=35

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 36
PG006 December 18, 2013

Chapter 4: Customizing and Generating the Core

The Customize IP dialog box displays a representation of the IP symbol on the left side, and
the parameter assignments on the right side, which are described as follows:

• Component Name: The component name is used as the base name of output f iles
generated for the module. Names must begin with a letter and must be composed
from characters: a to z, A to Z, 0 to 9 and “_”.

Note: The name “v_manr_v6_1” is not allowed.

• Noise Reduction Strength: This parameter selects the default MTF. The MTF is
initialized according to one of the following settings. The MTF is fully programmable,
and the initial values specif ied during core generation can easily be overridden by
programming the desired MTF at run time.

• Frame Maximum/Preset Dimensions: These f ields represent the maximum
anticipated rectangle size on the input and output of the MANR core. The rectangle can
vary from 32x32 through 4096x4096. When the core is being used in Fixed mode
(AXI4_LITE is disabled), these f igures represent the f ixed frame dimensions.

• Optional Features:

° AXI4-Lite Register Interface: When selected, the core is generated with an
AXI4-Lite interface, which gives access to dynamically program and change

X-Ref Target - Figure 4-1

Figure 4-1: Customize IP Dialog Box

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=36

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 37
PG006 December 18, 2013

Chapter 4: Customizing and Generating the Core

processing parameters. For more information, see Control Interface in Chapter 2.

° INT_IF interface: When selected, interrupts are generated on this bus. See Interrupt
Subsystem in Chapter 2 for more details.

Output Generation
For details, see “Generating IP Output Products” in the Vivado Design Suite User Guide:
Designing with IP (UG896).

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=37

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 38
PG006 December 18, 2013

Chapter 5

Constraining the Core

Required Constraints
The only constraints required are clock frequency constraints for the video clock, clk , and
the AXI4-Lite clock, s_axi_aclk . Paths between the two clock domains should be
constrained with a max_delay constraint and use the datapathonly flag, causing setup
and hold checks to be ignored for signals that cross clock domains. These constraints are
provided in the XDC constraints f ile included with the core.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=38

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 39
PG006 December 18, 2013

Chapter 6

C Model Reference
This chapter introduces the bit accurate C model for the Motion Adaptive Noise Reduction
core, which has been developed primarily for system-level modeling. Features of this
C model include:

• Bit accurate with v_manr_v6_1 core

• Library module for the MANR core function

• Available for 32 and 64-bit Windows and 32 and 64-bit Linux platforms

• Supports all features of the HW core that affect numerical results

• Designed for rapid integration into a larger system model

• Example application C code is provided to show how to use the function

Overview
The bit accurate C model for the LogiCORE™ IP MANR can be used on 32/64-bit Windows
and 32/64-bit Linux platforms. The model is comprised of a set of C functions, which reside
in a statically linked library (shared library). Full details of the interface to these functions
are provided in Interface, page 41.

The main features of the C model package are:

• Bit Accurate C Model - produces the same output data as the MANR core on a
frame-by-frame basis. However, the model is not cycle accurate, as it does not model
the core's latency or its interface signals.

• Application Source Code - uses the model library function. This can be used as
example code showing how to use the library function. However, it also serves these
purposes:

° Input .yuv file is processed by the application; 8-bit YUV422 format accepted.

° Output .yuv file is generated by the application; 8-bit YUV422 format generated.

° Report.txt file is generated for run time status and error messages.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=39

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 40
PG006 December 18, 2013

Chapter 6: C Model Reference

Unpacking and Model Contents
Unzip the v_manr_v6_1_bitacc_model f ile, containing the bit accurate models for the
MANR IP Core. This creates the directory structure and files in Table 6-1.

Table 6-1: Directory Structure and Files of MANR C Model

File Name Contents

Makefile Makefile for running gcc via make for 32-bit and
64-bit Linux platforms

v_manr_v6_1_bitacc_cmodel.h Model header f ile

yuv_utils.h Header f ile declaring the YUV image / video
container type and support functions including
.yuv file I/O

rgb_utils.h Header f ile declaring the RGB image / video
container type and support functions

bmp_utils.h Header f ile declaring the bitmap (.bmp) image f ile
I/O functions.

video_utils.h Header f ile declaring the generalized image / video
container type, I/O and support functions

video_fio.h Header f ile declaring support functions for test
bench stimulus file I/O

run_bitacc_cmodel.c Example code calling the C model

run_bitacc_cmodel_config.c Example code calling the C model – uses command
line and config f ile arguments

run_bitacc_cmodel.sh Bash shell script that compiles and runs the
model.

f iles included in the lin64.zip f ile Precompiled bit accurate ANSI C reference model
for simulation on 64-bit Linux platforms.

libIp_v_manr_v6_1_bitacc_cmodel.so Model shared object library

run_bitacc_cmodel 64-bit Windows fixed configuration executable

files included in the lin.zip f ile Precompiled bit accurate ANSI C reference model
for simulation on 32-bit Linux platforms.

 libIp_v_manr_v6_1_bitacc_cmodel.so Model shared object library

 run_bitacc_cmodel 32-bit Windows fixed configuration executable

files included in the nt64.zip file Precompiled bit accurate ANSI C reference model
for simulation on 64-bit Windows platforms.

libIp_v_manr_v6_1_bitacc_cmodel.dll Precompiled library f ile for 64-bit Windows
platforms compilation

libIp_v_manr_v6_1_bitacc_cmodel.lib Precompiled library f ile for 64-bit Windows
platforms compilation

run_bitacc_cmodel.exe 64-bit Windows fixed configuration executable

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=40

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 41
PG006 December 18, 2013

Chapter 6: C Model Reference

Software Requirements
The MANR C models were compiled and tested with the software listed in Table 6-2.

Interface
The MANR core function is a statically linked library. A higher level software project can
make function calls to this function:

int xilinx_ip_v_manr_v6_1_bitacc_simulate(
struct xilinx_ip_v_manr_v6_1_generics *generics,
struct xilinx_ip_v_manr_v6_1_inputs *inputs,
struct xilinx_ip_v_manr_v6_1_outputs* outputs).

Before using the model, the structures holding the inputs, generics and output of the MANR
instance must be defined:

struct xilinx_ip_v_manr_v6_1_generics manr_generics;
struct xilinx_ip_v_manr_v6_1_inputs manr_inputs;
struct xilinx_ip_v_manr_v6_1_outputs* manr_outputs

f iles included in the nt.zip file Precompiled bit accurate ANSI C reference model
for simulation on 32-bit Windows platforms.

libIp_v_manr_v6_1_bitacc_cmodel.dll Precompiled library f ile for 32-bit Windows
platforms compilation

libIp_v_manr_v6_1_bitacc_cmodel.lib Precompiled library f ile for 32-bit Windows
platforms compilation

run_bitacc_cmodel.exe 32-bit Windows fixed configuration executable

./examples

video_in.yuv Example YUV input file, resolution 1280Hx720V

video_in.hdr Header f ile for video_in.yuv

video_in_128x128.yuv Example YUV input file, resolution 128Hx128V

video_in_128x128.hdr Header f ile for video_in_128x128.yuv

Table 6-2: Compilation Tools for the Bit Accurate C Models

Platform C Compiler

32/64-bit Linux GCC 4.1.1

32/64-bit Windows Microsoft Visual Studio 2008

Table 6-1: Directory Structure and Files of MANR C Model (Cont’d)

File Name Contents

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=41

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 42
PG006 December 18, 2013

Chapter 6: C Model Reference

The declaration of these structures are in the v_manr_v6_1_bitacc_cmodel.h f ile.

Before making the function call, complete these steps:

1. Populate the generics structure:

nr_strength - Between 0 and 7. Describes the strength of the initial noise reduction
f ilter: 0 = Strongest, 7=Weakest.

2. Populate the inputs structure to define the values of run time parameters:

Note: This function processes one frame at a time.

° video_in - Video structure that comprises these elements:

- bits_per_component - Must be set to 8.

- cols - Horizontal image size: 32 to 1920.

- rows - Vertical image size: 32 to 1080.

- frames - Set to 1; this function processes one frame at a time.

- mode - Defines the chroma format (RGB, YUV422, and so on); see Table 6-4.
This core can only process YC422.

- data - This is the frame of video data to be processed, arranged in raster form.

° mtf - MTF Look-up table. This is a 1D array of 64 integers in the range 0 to 255,
which represents the Motion Transfer Function.

3. Populate the mtf variable. The variable mimics the internal MTF storage of the core, and
is declared as extern int mtf[16][64]; in v_manr_v6_1_bitacc_cmodel.h.

4. Populate the outputs structure.

° video_out - Video structure that comprises the same elements as the video_in
structure element described previously.

Note: The video_in variable is not initialized because the initialization depends on the actual test
image to be simulated. The next section describes the initialization of the video_in structure.

Results are provided in the outputs structure, which contains the output video data in the
form of type video_struct. After the outputs have been evaluated or saved, dynamically
allocated memory for input and output video structures must be released. See Delete the
Video Structure, page 44 for more information. Successful execution of all provided
functions return a value of 0. Otherwise, a non-zero error code indicates that problems were
encountered during function calls.

Input and Output Video Structure
Input images or video streams can be provided to the MANR reference model using the
general purpose video_struct structure, defined in video_utils.h:

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=42

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 43
PG006 December 18, 2013

Chapter 6: C Model Reference

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5]; };

Table 6-3: Member Variables of the Video Structure

Member Variable Designation

Frames Number of video/image frames in the data structure

Rows Number of rows per frame(1)

Cols Number of columns per line(1)

Bit_per_component Number of bits per color channel/component. All image planes are
assumed to have the same color/component representation.
Maximum number of bits per component is 16.

Mode Contains information about the designation of data planes. Named
constants to be assigned to mode are listed in Table 6-4.

Data Set of f ive pointers to three dimensional arrays containing data for
image planes. Data is in 16-bit unsigned integer format accessed as
data[plane][frame][row][col]. In the MANR C model case, only one
frame is processed at any one time. Consequently, the '[frame]' index
is always set to 0.

1. Pertaining to the image plane with the most rows and columns, such as the luminance channel for YUV data. Frame
dimensions are assumed constant through all frames of the video stream, however, different planes, such as Y,U
and V can have different dimensions.

Table 6-4: Named Constants for Video Modes With Corresponding Planes and Representations

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome – luminance only

FORMAT_RGB 3 RGB image/video data

FORMAT_C444 3 444 YUV, or YCbCr image/video data

FORMAT_C422(1) 3 422 format YUV video, (U,V chrominance channels horizontally
sub-sampled)

FORMAT_C420 3 420 format YUV video, (U,V sub-sampled both horizontally and
vertically)

FORMAT_MONO_M 3 Monochrome (luminance) video with motion

FORMAT_RGBA 4 RGB image/video data with alpha (transparency) channel

FORMAT_C420_M 5 420 YUV video with motion

FORMAT_C422_M 5 422 YUV video with motion

FORMAT_C444_M 5 444 YUV video with motion

FORMAT_RGBM 5 RGB video with motion
1. Supported by the MANR core.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=43

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 44
PG006 December 18, 2013

Chapter 6: C Model Reference

Working With Video_struct Containers
The header f ile video_utils.h defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

The function video_planes_per_mode returns the number of component planes defined
by the mode variable, as described in Table 6-4. The functions video_rows_per_plane
and video_cols_per_plane return the number of rows and columns in a given plane of
the selected video structure. The following example demonstrates using these functions in
conjunction to process all pixels within a video stream stored in variable in_video:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode); plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on
// in_video->data[plane][frame][row][col]
 }
 }
 }
}

Delete the Video Structure

Large arrays such as the video_in element in the video structure must be deleted to free
up memory.

The following example function is defined as part of the video_utils package.

void free_video_buff(struct video_struct* video)
{
 int plane, frame, row;

 if (video->data[0] != NULL) {
 for (plane = 0; plane <video_planes_per_mode(video->mode); plane++) {
 for (frame = 0; frame < video->frames; frame++) {
 for (row = 0; row<video_rows_per_plane(video,plane); row++) {
 free(video->data[plane][frame][row]);
 }
 free(video->data[plane][frame]);
 }
 free(video->data[plane]);
 }
 }
}

This function can be called as follows:

free_video_buff ((struct video_struct*) &manr_outputs.video_out);

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=44

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 45
PG006 December 18, 2013

Chapter 6: C Model Reference

Example Code
An example C file, run_bitacc_cmodel.c, is provided along with the lin32, lin64, NT32
and NT64 executables for this example. This C f ile has these characteristics:

• Contains an example of how to write an application that makes a function call to the
MANR C model core function.

• Contains an example of how to populate the video structures at the input and output,
including allocation of memory to these structures.

• Uses a YUV or BMP file reading function to extract video information for use by the
model.

• Uses a YUV or BMP file writing function to provide an optional output YUV file, which
allows you to visualize the result of the MANR operation.

The delivered model extracts a number of frames from the specif ied .yuv or .bmp input f ile,
removes noise from this video stream, and outputs the noise reduced stream in the
specified .yuv or .bmp output f ile. For BMP input processing, separate f iles should be
provided for the current and previous inputs. The example code contains simple
color-space converters (RGB to YUV, YUV to RGB) and chroma re-samplers (YUV444 to
YUV422, YUV422 to YUV444) to facilitate MANR simulations.

The MANR algorithm is temporally recursive. Motion is determined by comparing the
current frame with the previous frame. For the f irst input frame, there is no previous frame,
so the f irst output frame always shows zero motion.

The MTF (motion transfer function) determines the level to which each of the two frames
contributes to the output frame. The nr_strength parameter selects between f ive different
MTF characteristics. These functions are coded into the wrapper function
run_bitacc_cmodel.c.

Initializing the MANR Input Video Structure
In the example code wrapper, data is assigned to a video structure by reading from a .yuv
video f ile. This f ile is described in C Model Example I/O Files, page 46. The yuv_utils.h
and video_utils.h header f iles packaged with the bit accurate C models contain
functions to facilitate f ile I/O. The run_bitacc_cmodel example code uses these
functions to read from the YUV file.

YUV Image Files

The header yuv_utils.h f ile declares functions that help access f iles in standard YUV
format. It operates on images with three planes (Y, U and V). The following functions
operate on arguments of type yuv8_video_struct, which is defined in yuv_utils.h.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=45

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 46
PG006 December 18, 2013

Chapter 6: C Model Reference

int write_yuv8(FILE *outfile, struct yuv8_video_struct *yuv8_video);
int read_yuv8(FILE *infile, struct yuv8_video_struct *yuv8_video);

Exchanging data between yuv8_video_struct and general video_struct type
frames/videos is facilitated by functions:

int copy_yuv8_to_video(struct yuv8_video_struct* yuv8_in,
struct video_struct* video_out);

int copy_video_to_yuv8(struct video_struct* video_in,
struct yuv8_video_struct* yuv8_out);

Note: All image/video manipulation utility functions expect both input and output structures to be
initialized. For example, pointing to a structure to which memory has been allocated, either as static
or dynamic variables. Moreover, the input structure must have the dynamically allocated container
(data or y ,u, v) structures already allocated and initialized with the input frame(s). If the output
container structure is pre-allocated at the time of the function call, the utility functions verify and
generate an error if the output container size does not match the size of the expected output. If the
output container structure is not pre-allocated, the utility functions create the appropriate container
to hold results.

C Model Example I/O Files

Input Files

• <input_filename>.yuv (Optional; for example, video_in.yuv,
video_in_128x128.yuv).

° Standard 8-bit YUV file format. Entire Y plane followed by entire Cb plane, followed
by the entire Cr plane.

° Can be viewed in a YUV player.

° No header.

Output Files

• <output_filename>.yuv (Optional; for example, video_out.yuv).

° Standard 8-bit 4:2:2 yuv file format. Entire Y plane followed by entire Cb plane,
followed by the entire Cr plane.

° Can be viewed in a YUV player.

Compiling the MANR C Model With Example Wrapper

Linux (32/64 bits)

For 64-bit Linux, cd into the /lin64 directory. From there, run the command:

gcc -m64 -x c++ ../run_bitacc_cmodel.c -o run_bitacc_cmodel -L.
-lIp_v_manr_v6_1_bitacc_cmodel -Wl,-rpath,.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=46

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 47
PG006 December 18, 2013

Chapter 6: C Model Reference

When using 32-bit Linux, cd into the /lin directory, and run with the '-m32' switch:

gcc -m32 -x c++ ../run_bitacc_cmodel.c -o run_bitacc_cmodel -L.
-lIp_v_manr_v6_1_bitacc_cmodel -Wl,-rpath,.

To run either 32- or 64-bit executables:

1. Set your LD_LIBRARY_PATH environment variable to the location of the two .so libraries.

2. Execute as follows:

./run_bitacc_cmodel video_in.yuv video_out.yuv 10 1280 720 2 1

Windows (32/64-bits)

The v_manr_v6_1_bitacc_cmodel.zip f ile includes all the necessary f iles required to
compile the top-level demonstration code run_bitacc_cmodel.c with an ANSI C
compliant compiler under Windows.

This section includes an example using Microsoft Visual Studio.

In Visual Studio, create a new, empty Win32 Console Application project. In the appropriate
project folders, add the following f iles:

• v_manr_v6_1_bitacc_cmodel.h

• libIp_v_manr_v6_1_bitacc_cmodel.lib

• run_bitacc_cmodel.c

To run either 32- or 64-bit executables:

1. Cd to a location that includes all the following f iles

° run_bitacc_cmodel.exe (or the executable f ile generated by your compiler)

° libIp_v_manr_v6_1_bitacc_cmodel.dll

2. Execute as follows:

Usage: c_model -y <YUV filename>
 -h <H Size (pixels)>
 -v <V Size (lines)>
 -f <number of frames to be processed>
 -n <Noise-reduction strength (0 - 4)>

For example:

run_bitacc_cmodel video_in.yuv video_out.yuv 10 1280 720 2 2

Compile/Run Shell Script
To compile the example code, use the cd command to go to the directory where the header
f iles, the library f iles and run_bitacc_cmodel.c were unpacked. The libraries and

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=47

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 48
PG006 December 18, 2013

Chapter 6: C Model Reference

header f iles are referenced during the compilation and linking process. They are in the
/lin64 directory. Use the cd command to go into the lin/lin64 directory and execute
the bash shell script that compiles the project using the GNU C Compiler and runs it:

bash run_bitacc_cmodel.sh

The bash script text is provided here:

#!/bin/bash

###

Compile model and libraries

###

gcc -x c++ ../run_bitacc_cmodel.c -o run_bitacc_cmodel -L. -lIp_v_manr_v6_1_bitacc_cmodel
-Wl,-rpath,.

###

Run model.

Usage:

./run_bitacc_model -y <input_file>.yuv -h <hsize> -v <vsize> -f <#frames> -n <NR_strength>

NR_strength:

0 = None

1 = Weak

2 = Medium

3 = Strong

4 = Aggressive

Example:

./run_bitacc_cmodel -y ../video_in.yuv -h 1280 -v 720 -f 10 -n 2
###

./run_bitacc_cmodel -y ../video_in.yuv -h 1280 -v 720 -f 10 -n 2

You can customize this shell script.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=48

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 49
PG006 December 18, 2013

Chapter 7

Simulation
This chapter contains information about simulating IP in the Vivado® Design Suite
environment. For comprehensive information about Vivado simulation components, as well
as information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 11].

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=49

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 50
PG006 December 18, 2013

Chapter 8

Synthesis and Implementation
For details about synthesis and implementation, see “Synthesizing IP” and “Implementing
IP” in the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7].

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=50

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 51
PG006 December 18, 2013

Chapter 9

Detailed Example Design
No example design is available for the Motion Adaptive Noise Reduction core at the time.

For a comprehensive listing of the latest Video and Imaging application notes, white
papers, reference designs and related IP cores, see the Video and Imaging Resources page:

www.xilinx.com/esp/video/refdes_listing.htm

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/esp/video/refdes_listing.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=51

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 52
PG006 December 18, 2013

Chapter 10

Test Bench
This chapter contains information about the provided test bench in the Vivado® Design
Suite environment.

Demonstration Test Bench
A demonstration test bench is provided with the core which enables you to observe core
behavior in a typical scenario. This test bench is generated together with the core in
Vivado Design Suite. You are encouraged to make simple modif ications to the
configurations and observe the changes in the waveform.

Directory and File Contents
The following files are expected to be generated in the in the demonstration test bench
output directory:

• axi4lite_mst.v

• axi4s_video_mst.v

• axi4s_video_slv.v

• ce_generator.v

• tb_<IP_instance_name>.v

Test Bench Structure
The top-level entity is tb_<IP_instance_name>.

It instantiates the following modules:

• DUT

The <IP> core instance under test.

• axi4lite_mst

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=52

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 53
PG006 December 18, 2013

Chapter 10: Test Bench

The AXI4-Lite master module, which initiates AXI4-Lite transactions to program core
registers.

• axi4s_video_mst

The AXI4-Stream master module, which generates ramp data and initiates AXI4-Stream
transactions to provide video stimuli for the core and can also be used to open stimuli
f iles generated from the reference C models and convert them into corresponding
AXI4-Stream transactions.

To do this, edit tb_<IP_instance_name>.v:

a. Add define macro for the stimuli f ile name and directory path
define STIMULI_FILE_NAME<path><filename>.

b. Comment-out/remove the following line:
MST.is_ramp_gen(`C_ACTIVE_ROWS, `C_ACTIVE_COLS, 2);
and replace with the following line:
MST.use_file(`STIMULI_FILE_NAME);

For information on how to generate stimuli f iles, see Chapter 4, C Model Reference.

• axi4s_video_slv

The AXI4-Stream slave module, which acts as a passive slave to provide handshake
signals for the AXI4-Stream transactions from the core output, can be used to open the
data files generated from the reference C model and verify the output from the core.

To do this, edit tb_<IP_instance_name>.v:

a. Add define macro for the golden f ile name and directory path
define GOLDEN_FILE_NAME “<path><filename>”.

b. Comment out the following line:
SLV.is_passive;
and replace with the following line:
SLV.use_file(`GOLDEN_FILE_NAME);

For information on how to generate golden f iles, see Chapter 4, C Model Reference.

• ce_gen

Programmable Clock Enable (ACLKEN) generator.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=53

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 54
PG006 December 18, 2013

Appendix A

Verification, Compliance, and
Interoperability

This appendix includes details on simulation and testing.

Simulation
A parameterizable test bench was used to test the MANR core. Testing included the
following:

• Register accessing

• Processing of multiple frames of data

• Various frame sizes

• Various MANR strengths

• Various AXI4-Stream data bus widths.

Hardware Testing
The MANR core has been tested in a variety of hardware platforms at Xilinx for various
parameterizations, including the following:

• A test design was developed for the core that incorporated a MicroBlaze™ processor,
AXI4 interface and various other peripherals, as described in Chapter 9, Detailed
Example Design.

• The software for the test system included input frames embedded in the source-code.
The checksums of the processed images were also pre-calculated and included in the
software. The frames, resident in external memory, are read by the AXI_VDMA,
processed by the MANR and the result is passed back to memory. Software then
accesses the processed frame in memory and calculates its checksum. This matches the
pre-calculated checksum.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=54

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 55
PG006 December 18, 2013

Appendix A: Verification, Compliance, and Interoperability

• Various configurations were implemented in this way. The C model was used to create
the expected checksums and generate the stimulus C code frame data that is compiled
into the software.

• Pass/fail status is reported by the software.

In addition, the MANR core has been more regularly tested using an automated validation
flow. Primarily, this instantiates the core to read registers back, validating the core Version
register and proving that it has been implemented in the design. This has been run regularly
to validate new core versions during development.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=55

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 56
PG006 December 18, 2013

Appendix B

Migrating and Upgrading
This appendix contains information about migrating from an ISE design to the Vivado
Design Suite, and for upgrading to a more recent version of the IP core. For customers
upgrading their IP core, important details (where applicable) about any port changes and
other impact to user logic are included.

Migrating to the Vivado Design Suite
For information about migration to Vivado Design Suite, see ISE to Vivado Design Suite
Migration Guide (UG911) [Ref 6].

Upgrading in Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes
There are no parameter changes.

Port Changes
There are no port changes.

Other Changes
This appendix describes updating from older versions of the IP to the current IP release.

From v5.01.a to v6.0 of the MANR core, the following changes took place:

• Two-dimensional spatial f iltering added to improve noise / motion detection.

• MTF storage was extended to 16 banks.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=56

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 57
PG006 December 18, 2013

Appendix B: Migrating and Upgrading

• Default MTF count doubled to 8 default curves

• Debug frame, line, and pixel counters were added.

• Improved AXI4-Stream stability with the AXI-VDMA, built-in synchronization of slave
(input) AXI4-Stream channels at SOF and EOL.

• Improved error detection and recovery for SOF / EOL framing errors.

• FRAME_SIZE register address made consistent with the rest of the Xilinx Image and
Video Processing Cores.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=57

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 58
PG006 December 18, 2013

Appendix C

Debugging
This appendix includes details about resources available on the Xilinx® Support website
and debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the MANR core, the Xilinx Support
web page (www.xilinx.com/support) contains key resources such as product documentation,
release notes, answer records, information about known issues, and links for opening a
Technical Support WebCase.

Documentation
This product guide is the main document associated with the MANR core. For the Video
over AXI4-Stream specif ication, see AXI4-Stream Video IP and System Design Guide (UG934)
[Ref 5]. These guides, along with documentation related to all products that aid in the
design process, can be found on the Xilinx Support web page (www.xilinx.com/support) or
by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads
page (www.xilinx.com/download). For more information about this tool and the features
available, open the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/download
www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=58

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 59
PG006 December 18, 2013

Appendix C: Debugging

Answer Records for this core are listed below, and can also be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

A f ilter search is available after results are returned to further target the results.

Answer Records for the MANR Core

AR 54528

Contacting Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

Xilinx provides premier technical support for customers encountering issues that require
additional assistance.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Support Quick Links.

When opening a WebCase, include:

• Target FPGA including package and speed grade.

• All applicable Xilinx Design Tools and simulator software versions.

• A block diagram of the video system that explains the video source, destination and IP
(custom and Xilinx) used.

• Additional f iles based on the specif ic issue might also be required. See the relevant
sections in this debug guide for guidelines about which f ile(s) to include with the
WebCase.

Note: Access to WebCase is not available in all cases. Please login to the WebCase tool to see your
specif ic support options.

Send Feedback

Discontinued IP

http://www.xilinx.com/support/clearexpress/websupport.htm
www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com/support/answers/54528.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=59

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 60
PG006 December 18, 2013

Appendix C: Debugging

Debug Tools
There are many tools available to address MANR core design issues. It is important to know
which tools are useful for debugging various situations.

Vivado Lab Tools
Vivado® lab tools insert logic analyzer and virtual I/O cores directly into your design.
Vivado lab tools allows you to set trigger conditions to capture application and integrated
block port signals in hardware. Captured signals can then be analyzed. This feature
represents the functionality in the Vivado IDE that is used for logic debugging and
validation of a design running in Xilinx devices in hardware.

The Vivado lab tools logic analyzer is used to interact with the logic debug LogiCORE IP
cores, including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908).

Reference Boards
Various Xilinx development boards support MANR. These boards can be used to prototype
designs and establish that the core can communicate with the system.

• 7 series evaluation boards

° KC705

° KC724

C Model Reference
See Chapter 4, C Model Reference in this guide for tips and instructions for using the
provided C model f iles to debug your design.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/v=latest/ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=60

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 61
PG006 December 18, 2013

Appendix C: Debugging

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado lab tools are a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the Vivado lab tools for debugging the specific problems.

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the
example design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in
hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all
clock sources are active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by
monitoring the LOCKED port.

• If your outputs go to 0, check your licensing.

Core Bypass Option
The bypass option facilitates establishing a straight through connection between input
(AXI4-Stream slave) and output (AXI4-Stream master) interfaces bypassing any processing
functionality.

Flag BYPASS (bit 2 of the CONTROL register) can turn bypass on (1) or off. Within the IP this
switch turns off noise reduction in the AXI4-Stream path.

In bypass mode the core processing function is bypassed, and the core repeats AXI4-Stream
input samples on its output.

Starting a system with all processing cores set to bypass, then by turning bypass off from
the system input towards the system output allows verif ication of subsequent cores with
known good stimuli.

Throughput Monitors
Throughput monitors enable monitoring processing performance within the core. This
information can be used to help debug frame-buffer bandwidth limitation issues, and if
possible, allow video application software to balance memory pathways.

Often times video systems, with multiport access to a shared external memory, have
different processing islands. For example, a pre-processing sub-system working in the input
video clock domain may clean up, transform, and write a video stream, or multiple video

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=61

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 62
PG006 December 18, 2013

Appendix C: Debugging

streams to memory. The processing sub-system may read the frames out, process, scale,
encode, then write frames back to the frame buffer, in a separate processing clock domain.

Finally, the output sub-system may format the data and read out frames locked to an
external clock.

Typically, access to external memory using a multiport memory controller involves
arbitration between competing streams. However, to maximize the throughput of the
system, different memory ports may need different specific priorities. To fine tune the
arbitration and dynamically balance frame rates, it is beneficial to have access to
throughput information measured in different video datapaths.

The SYSDEBUG0 (0x0014) (or Frame Throughput Monitor) indicates the number of frames
processed since power-up or the last time the core was reset. The SYSDEBUG1 (0x0018), or
Line Throughput Monitor, register indicates the number of lines processed since power-up
or the last time the core was reset. The SYSDEBUG2 (0x001C), or Pixel Throughput Monitor,
register indicates the number of pixels processed since power-up or the last time the core
was reset.

Priorities of memory access points can be modified by the application software dynamically
to equalize frame, or partial frame rates.

Evaluation Core Timeout
The MANR hardware evaluation core times out after approximately eight hours of
operation. The output is driven to zero. This results in a black screen for RGB color systems
and in a dark-green screen for YUV color systems.

Interface Debug

AXI4-Lite Interfaces
Table C-1 describes how to troubleshoot the AXI4-Lite interface.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=62

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 63
PG006 December 18, 2013

Appendix C: Debugging

Assuming the AXI4-Lite interface works, the second step is to bring up the AXI4-Stream
interfaces.

AXI4-Stream Interfaces
Table C-2 describes how to troubleshoot the AXI4-Stream interface.

Table C-1: Troubleshooting the AXI4-Lite Interface

Symptom Solution

Readback from the Version
Register through the AXI4-Lite
interface times out, or a core
instance without an AXI4-Lite
interface seems non-responsive.

Are the S_AXI_ACLK and ACLK pins connected?
The VERSION_REGISTER readout issue may be indicative of the
core not receiving the AXI4-Lite interface.

Readback from the Version
Register through the AXI4-Lite
interface times out, or a core
instance without an AXI4-Lite
interface seems non-responsive.

Is the core enabled? Is s_axi_aclken connected to vcc?
Verify that signal ACLKEN is connected to either net_vcc or to a
designated clock enable signal.

Readback from the Version
Register through the AXI4-Lite
interface times out, or a core
instance without an AXI4-Lite
interface seems non-responsive.

Is the core in reset?
S_AXI_ARESETn and ARESETn should be connected to vcc for
the core not to be in reset. Verify that the S_AXI_ARESETn and
ARESETn signals are connected to either net_vcc or to a
designated reset signal.

Readback value for the
VERSION_REGISTER is different
from expected default values

The core and/or the driver in a legacy project has not been
updated. Ensure that old core versions, implementation f iles, and
implementation caches have been cleared.

Table C-2: Troubleshooting AXI4-Stream Interface

Symptom Solution

Bit 0 of the ERROR
register reads back
set.

Bit 0 of the ERROR register, EOL_EARLY, indicates the number of pixels received
between the latest and the preceding End-Of-Line (EOL) signal was less than
the value programmed into the ACTIVE_SIZE register. If the value was
provided by the Video Timing Controller core, read out ACTIVE_SIZE register
value from the VTC core again, and make sure that the TIMING_LOCKED flag is
set in the VTC core. Otherwise, using Vivado Lab Tools, measure the number of
active AXI4-Stream transactions between EOL pulses.

Bit 1 of the ERROR
register reads back
set.

Bit 1 of the ERROR register, EOL_LATE, indicates the number of pixels received
between the last End-Of-Line (EOL) signal surpassed the value programmed
into the ACTIVE_SIZE register. If the value was provided by the Video Timing
Controller core, read out ACTIVE_SIZE register value from the VTC core
again, and make sure that the TIMING_LOCKED flag is set in the VTC core.
Otherwise, using Vivado Lab Tools, measure the number of active AXI4-Stream
transactions between EOL pulses.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=63

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 64
PG006 December 18, 2013

Appendix C: Debugging

If the AXI4-Stream communication is healthy, but the data seems corrupted, the next step is
to find the correct configuration for this core.

Bit 2 or Bit 3 of the
ERROR register reads
back set.

Bit 2 of the ERROR register, SOF_EARLY, and bit 3 of the ERROR register
SOF_LATE indicate the number of pixels received between the latest and the
preceding Start-Of-Frame (SOF) differ from the value programmed into the
ACTIVE_SIZE register. If the value was provided by the Video Timing
Controller core, read out ACTIVE_SIZE register value from the VTC core
again, and make sure that the TIMING_LOCKED flag is set in the VTC core.
Otherwise, using Vivado Lab Tools, measure the number EOL pulses between
subsequent SOF pulses.

s_axis_video_tready
stuck low, the
upstream core cannot
send data.

During initialization, line-, and frame-flushing, the core keeps its
s_axis_video_tready input low. Afterwards, the core should assert
s_axis_video_tready automatically.
Is m_axis_video_tready low? If so, the core cannot send data downstream,
and the internal FIFOs are full.

m_axis_video_tvalid
stuck low, the
downstream core is
not receiving data

• No data is generated during the f irst two lines of processing.
• If the programmed active number of pixels per line is radically smaller than

the actual line length, the core drops most of the pixels waiting for the
(s_axis_video_tlast) End-of-line signal. Check the ERROR register.

Generated SOF signal
(m_axis_video_tuser0)
signal misplaced.

Check the ERROR register.

Generated EOL signal
(m_axis_video_tl
ast) signal
misplaced.

Check the ERROR register.

Data samples lost
between Upstream
core and this core.
Inconsistent EOL and/
or SOF periods
received.

• Are the Master and Slave AXI4-Stream interfaces in the same clock domain?
• Is proper clock-domain crossing logic instantiated between the upstream

core and this core (Asynchronous FIFO)?
• Did the design meet timing?
• Is the frequency of the clock source driving the ACLK pin lower than the

reported Fmax reached?

Data samples lost
between Downstream
core and this core.
Inconsistent EOL and/
or SOF periods
received.

• Are the Master and Slave AXI4-Stream interfaces in the same clock domain?
• Is proper clock-domain crossing logic instantiated between the upstream

core and this core (Asynchronous FIFO)?
• Did the design meet timing?
• Is the frequency of the clock source driving the ACLK pin lower than the

reported Fmax reached?

Table C-2: Troubleshooting AXI4-Stream Interface (Cont’d)

Symptom Solution

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=64

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 65
PG006 December 18, 2013

Appendix C: Debugging

Other Interfaces
Table C-3 describes how to troubleshoot third-party interfaces.

Table C-3: Troubleshooting Third-Party Interfaces

Symptom Solution

Severe color
distortion or
color-swap when
interfacing to
third-party video IP.

Verify that the color component logical addressing on the AXI4-Stream TDATA
signal is in according to Data Interface in Chapter 2. If misaligned:
In HDL, break up the TDATA vector to constituent components and manually
connect the slave and master interface sides.

Severe color
distortion or
color-swap when
processing video
written to external
memory using the
AXI-VDMA core.

Unless the particular software driver was developed with the AXI4-Stream TDATA
signal color component assignments described in Data Interface in Chapter 2 in
mind, there are no guarantees that the software correctly identif ies bits
corresponding to color components.
Verify that the color component logical addressing TDATA is in alignment with
the data format expected by the software drivers reading/writing external
memory. If misaligned:
In HDL, break up the TDATA vector to constituent components, and manually
connect the slave and master interface sides.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=65

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 66
PG006 December 18, 2013

Appendix D

Application Software Development
This appendix details the use of the software drivers that are included with SDK.

Device Drivers

Driver Files
The MANR core is delivered with a software driver written in the C programming language
that you can use to control the core using a system processor. A high-level API provides
application developers easy access to the features of the MANR core. A low-level API is also
provided for developers to access the core directly through the system registers.

API Functions
This section describes the functions included for the driver generated for the MANR core.
To use the API functions provided, the following header f iles must be included in your C
code:

#include “xparameters.h”
#include “xmanr.h”

The system hardware settings, including the base address of the MANR core, are defined in
the xparameters.h f ile. The xmanr.h f ile provides the API access to all of the features of
the MANR device driver.

Functions in xmanr.c

• int XMANR_CfgInitialize (XMANR *InstancePtr, XMANR_Config
*CfgPtr, u32 EffectiveAddr)

This function initializes a MANR core.

• void XMANR_SetFrameSize (XMANR *InstancePtr, u32 Height, u32
Width, u32 Stride)

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=66

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 67
PG006 December 18, 2013

Appendix D: Application Software Development

This function sets up the frame size information used by a MANR device. Note that
'stride' parameter is now obsolete and set to 0.

• void XMANR_GetFrameSize (XMANR *InstancePtr, u32 *HeightPtr, u32
*WidthPtr, u32 *StridePtr)

This function sets up the frame size information used by a MANR device. Note that
'StridePtr' is now obsolete.

• void XMANR_LoadMtfBank(XMANR *InstancePtr, u8 BankIndex, u32
*MTFData)

This function loads the Motion Transfer LUT configuration to be used by a MANR device.

• void XMANR_GetVersion(XMANR *InstancePtr, u16 *Major, u16 *Minor,
u16 *Revision)

This function returns the version of a MANR device.

Functions in xmanr_sinit.c

• XMANR_Config * XMANR_LookupConfig (u16 DeviceId)

XMANR_LookupConfig returns a reference to a XMANR_Config structure based on the
unique device ID, DeviceId.

Functions in xmanr_intr.c

• void XMANR_IntrHandler (void *InstancePtr)

This function is the interrupt handler for the MANR driver.

• int XMANR_SetCallBack (XMANR *InstancePtr, u32 HandlerType, void
*CallBackFunc, void *CallBackRef)

This routine installs an asynchronous callback function for the given HandlerType.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=67

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 68
PG006 December 18, 2013

Appendix E

Additional Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

For a comprehensive listing of Video and Imaging application notes, white papers,
reference designs and related IP cores, see the Video and Imaging Resources page:

www.xilinx.com/esp/video/refdes_listing.htm

References
These documents provide supplemental material useful with this user guide:

1. AMBA® AXI4-Stream Protocol Specif ication

2. LogiCORE IP FIFO Generator Product Guide (PG057)

3. Xilinx AXI Reference Guide (UG761)

4. LogiCORE IP AXI Interconnect Product Guide (PG059)

5. AXI4-Stream Video IP and System Design Guide (UG934)

6. ISE to Vivado Design Suite Migration Guide (UG911)

7. Vivado Design Suite User Guide: Designing with IP (UG896)

8. Vivado Design Suite User Guide: Programming and Debugging (UG908)

9. Vivado Design Suite User Guide: Getting Started (UG910)

10. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

11. Vivado Design Suite User Guide: Logic Simulation (UG900)

Send Feedback

Discontinued IP

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/esp/video/refdes_listing.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_interconnect;v=latest;d=pg059-axi-interconnect.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_videoip;v=latest;d=ug934_axi_videoIP.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug761_axi_reference_guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=latest;d=pg057-fifo-generator.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=68

Motion Adaptive Noise Reduction v6.1 www.xilinx.com 69
PG006 December 18, 2013

Appendix E: Additional Resources

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2011 - 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release.

04/24/2012 2.0 Updated core to v4.00a and ISE Design Suite to v14.1.

07/25/2012 3.0 Updated core to v5.00.a. Added support for Vivado Design Suite
implementations.

12/18/2012 3.1 • Updated for core v5.01.a, ISE Design Suite v14.4 and Vivado Design
Suite v2012.4.

• Updated resource and performance data.
• Updated register interface documentation.
• Added Appendix C, Debugging.

03/20/2013 4.0 • Updated for core v6.0
• Removed ISE
• The following sections: Throughput and Register Space.

10/02/2013 6.0 Synch document version with core version. Updated Constraints, C-Model
contents, and Hardware Debug.

12/18/2013 6.1 Added UltraScale Architecture support.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg006&Title=Motion%20Adaptive%20Noise%20Reduction%20v6.1&releaseVersion=6.1&docPage=69

