
ISim Hardware Co-Simulation
Tutorial:
Interacting with Spartan-6
Memory Controller and
On-Board DDR2 Memory

UG818 (v 13.1) March 18, 2011

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you
solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce,
distribute, republish, download, display, post, or transmit the Documentation in any form or by any means
including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation.
Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx
assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections
or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NOWARRANTY OF ANY KIND. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE
DOCUMENTATION.

© Copyright 2002-2011 Xilinx Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other
designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their
respective owners. The PowerPC name and logo are registered trademarks of IBM Corp., and used under license.
All other trademarks are the property of their respective owners.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
2 www.xilinx.com UG818 (v 13.1) March 18, 2011

Table of Contents
Chapter 1 Introduction ... 5

Prerequisites... 6
Tutorial Files... 6

Chapter 2 Tutorial ... 9

Step 1: Generating a Design Using the MIG Tool ... 9
Step 2: Creating a Test Bench .. 15
Step 3: Creating a Custom Constraints File.. 16
Step 4: Compiling the Design for Hardware Co-Simulation 18
Step 5: Running ISim Hardware Co-Simulation ... 22

Appendix Additional Resources ...27

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 3

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
4 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 1

Introduction
This tutorial describes how to use ISim hardware co-simulation to interact with the
Spartan®-6 FPGA memory controller block (MCB) and drive external DDR2 memory
from your HDL test bench at run-time.

External memory is commonly used in embedded, image, and video processing
applications that require a large amount of memory.

When developing an FPGA design that uses external memory, it is often challenging
to verify the whole design including the memory controller and external memory
module. Traditionally, we either simulate the whole design in software, or run the
whole design in hardware. A full software simulation approach is useful in two
aspects. It offers full visibility into the design and allows the test bench or design to be
changed and re-verified in a rapid manner. The challenges, however, are getting a (an
accurate) simulation model of the external memory module, and achieving a reasonable
simulation speed. In contrast, running the design in hardware addresses these problems,
but at the cost of reduced visibility into the design, and the complexity to set up and
change the test bench in hardware.

ISim hardware co-simulation is a third option in your toolbox. It gives you the flexibility
to run a portion of your design in hardware while simulating the rest in software. The
memory controller and external memory are, for example, good candidates to put in
hardware so that they are modeled exactly and simulated quickly. The test bench and
the application logic in your design, which are under development, should be simulated
in software so you can change, verify and debug them easily and rapidly. The following
figure shows how a design, which uses a memory controller and external memory, can
be partitioned to leverage the ISim hardware co-simulation features.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 5

Chapter 1: Introduction

Partitioning a Memory Design for ISim Hardware Co-Simulation

Prerequisites
This tutorial requires the following software and hardware:
• Xilinx ISE® Design Suite, version 13.1
• Spartan®-6 FPGA SP601 Evaluation Kit

Tutorial Files
File Description
mig_dut.v Wrapper that instantiates the MIG core and ties c3_p0_cmd_clk,

c3_p0_wr_clk and c3_p0_rd_clk of the MIG core to a single input
clock c3_clk0.

mig_hw_tb.v Top-level test bench provides Verilog tasks that issues read and
write transactions to the MCB.

mig_dut_hwcosim.ucf Custom constraints file for hardware co-simulation that indicates
which ports on the mig_dut module to be mapped to external I/Os
and which ports are controlled from the test bench.

init.tcl Custom simulation command file that tells ISim to load
testmem.tcl and initialize the simulation.

testmem.tcl Provides a testmem Tcl command that can be used in ISim console
to invoke the test_memory Verilog task in the test bench.

mig_hw_tb.wcfg Custom waveform configuration file.

mig_hw_tb.prj ISim project file for the command line flow.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
6 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 1: Introduction

File Description
hwcosim.bsp Modified hardware co-simulation board support to use the

27MHz user clock, instead of the 200MHz differential clock, on
the SP601 board as the hardware co-simulation interface clock.

full_compile.bat Windows batch file to fully compile the design for hardware
co-simulation with the Fuse command line.

full_compile.sh Linux shell script to fully compile the design for hardware
co-simulation with the Fuse command line.

incr_compile.bat Windows batch file to incrementally compile the test bench for
hardware co-simulation with the Fuse command line.

incr_compile.sh Linux shell script to incrementally compile the test bench for
hardware co-simulation with the Fuse command line.

run_isim.bat Windows batch file to launch the ISim simulation.

run_isim.sh Linux shell script to launch the ISim simulation.

Note Please note that when performing this tutorial, all data files must be copied to
your current working directory.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 7

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
8 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2

Tutorial
In the following sections, we will go through five steps to run a memory design through
ISim hardware co-simulation.
1. Generate a Spartan®-6 memory reference design using the Memory Interface

Generator (MIG) tool in CORE Generator™.
2. Create a test bench to exercise the memory reference design.
3. Create a custom constraints file to specify which ports on the design are controlled

by ISim and which are mapped to external I/Os.
4. Compile the test bench for ISim simulation with the design targeted for hardware

co-simulation.
5. Connect the target FPGA board to your PC and run the ISim simulation.

Step 1: Generating a Design Using the MIG Tool
The Spartan-6 FPGA has an embedded multi-port memory controller block (MCB),
which provides a simple and reliable way to interface with external DDR memory.
The Memory Interface Generator (MIG) tool in CORE Generator simplifies the design
process for that interfacing with the MCB. In this tutorial, we are going to use the
reference design generated by the MIG tool and create an ISim hardware co-simulation
test bench that runs on the Spartan-6 FPGA SP601 Evaluation Kit.
1. Launch the ISE® Project Navigator.
2. Choose File > New Project to open the New Project Wizard. Enter a project name,

(mig_sp601), and location. Click Next.

3. On the Project Settings page, choose the part for the SP601 board, which is
Spartan-6 device XC6SLX16, package CSG324, and speed -2. Select ISim as the

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 9

Chapter 2: Tutorial

Simulator and Verilog as the Preferred Language. Click Next and then Finish to
complete the project creation.

4. Choose Project > New Source to open the New Source Wizard. Select IP (CORE
Generator & Architecture Wizard) and name the IP asmig. Click Next.

5. SelectMIG version 3.7 from the IP list. Click Next and then Finish.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
10 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2: Tutorial

6. When the MIG GUI is launched, select Create Design to create a new MCB based
memory interface. Entermig in the Component Name field. Click Next.

7. Select DDR2 SDRAM as theMemory Type for the MCB (C3) on bank 3. ClickNext.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 11

Chapter 2: Tutorial

8. Use 3200ps (312.50MHz) as the clock period for the desired frequency. Select
EDE1116AXXX-8E as theMemory Part. Click Next.

9. Use the default settings on the Memory Options page. Click Next.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
12 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2: Tutorial

10. Select One 128-bit bi-directional port as the Port Configuration. Click Next.

11. Use the default settings on the Arbitration page. Click Next.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 13

Chapter 2: Tutorial

12. On the FPGA Options page set RZQ pin location to C2 and ZIO pin location to
L6. Click Next.

13. ClickNext to go through the rest of the pages, and clickGenerate on the last page to
generate the MIG core.

14. After the MIG core is generated, modify the PLL settings in the generated
ipcore_dir/mig/users_design/rtl/mig.v in order to use the 200 MHz
differential clock on the SP601 board as the system clock to generate the 625 MHz
clock for the MIG core. Use the following parameter values in the mig.v.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
14 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2: Tutorial

localparam C3_CLKFBOUT_MULT = 25; // 200 * (25/8) = 625 MHz
localparam C3_DIVCLK_DIVIDE = 8;

15. Add a Verilog modulemig_dut.v that instantiates the MIG core and ties the clocks
(c3_p0_cmd_clk, c3_p0_rd_clk, c3_p0_wr_clk) for command, read, and write FIFOs
to a single clock (c3_clk0). You can use the completed mig_dut.v file provided in
this tutorial.

Step 2: Creating a Test Bench
1. Add a Verilog Test Bench module mig_hw_tb.v that drives the mig_dut instance.

You can use the completed mig_hw_tb.v file provided in this tutorial.

This tutorial provides a test bench (mig_hw_tb.v) and a Tcl command (testmem.tcl)
to allow interactions with the MCB and external memory through the ISim Tcl console.

The test bench contains two arrays, input_data and output_data, for buffering the data
to be written into and read from the external memory. The MCB supports a write/read
burst up to 64 128-bit words. In the previous steps, we have configured the MCB to
expose one 128-bit bi-directional port. Therefore, we set the size of input_data and
output_data to 64x128-bits each. The test bench also defines a test_parameters module
(instantiated as params), which holds parameters for the test bench. The usage of those
parameters is described below.

There are some Verilog tasks defined in the test bench:

• clear_input_output_data - Fills the input_data and output_data array with
zeros.

• compare_input_output_data(input nwords) - Compares nwords words of
data in the input_data and output_data array, and reports any mismatches
found.

• use_walking_pattern(input b) Fills the input_data array with walking
zeros pattern if b = 0 or with walking ones pattern if b = 1.

• write_data(input start_addr, input burst_size) - Writes
burst_size words of data from the input_data array to the external memory
starting at address start_addr. It first pushes data to the write FIFO interface
(c3_p0_wr_*) on the MCB and then pushes a write command to the command
FIFO interface (c3_p0_cmd_*).

• read_data(input start_addr, input burst_size) - Reads burst_size
words of data from the external memory starting at address start_addr into
the output_data array. It first pushes a read command to the command FIFO
interface (c3_p0_cmd_*) on the PCB and then pulls data from the read FIFO
interface (c3_p0_rd_*).

• test_memory - Writes data from the input_data array into the external memory
of a specified region and then read the data back from the same region to the
output_data array. The memory region is specified by params.StartAddress
and params.EndAddress. The data pattern used to fill the input_data array is
specified by params.DataPattern (0 – use the current data in input_data, 1 – use
walking zeros, 2 – use walking ones).

The testmem Tcl command sets the value of StartAddress, EndAddress, and
DataPattern in the params module. It then toggles the run_test_trigger
signal in the test bench. Upon a rising edge of the run_test_trigger signal, the
test_read_write task is called to exercise the write and read transaction on the
external memory and check to make sure the data are written correctly to the external
memory by comparing against the readback data.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 15

Chapter 2: Tutorial

Step 3: Creating a Custom Constraints File
Partitioning the Design into Lock-step and Free-running Portion

The key concept of this tutorial is to partition the design into two portions:

• • A free-running portion that interfaces with the external memory through the
Spartan®-6 MCB. It connects to external I/Os and clocks, and runs at full memory
clock speed.

• A lock-step portion that is driven by the HDL test bench through ISim. It is
synchronized to the ISim simulation, and receives stimuli and clock events virtually
over the hardware co-simulation interface. As a result, it runs at a much lower speed.

The following figure shows how the MIG design is clocked under hardware
co-simulation. The hardware co-simulation interface is inserted automatically during
the compilation. It generates an emulated clock based on the 27 MHz user clock on the
SP601 board. The emulated clock corresponds to the clock event on the c3_clk0 signal in
the test bench and drives the c3_clk0 port of mig_dut running in hardware. The system
clock for the MIG core is derived from the 200 MHz differential clock on the SP601 board.

Mapping Ports to External I/Os and Clocks
You can provide a custom constraints file, in the Xilinx’s UCF format, to instruct the ISim
compiler which ports of the instance under hardware co-simulation to be mapped to
FPGA IOBs, and which ports are controlled by the HDL test bench. The ISim compiler
looks for LOC constraints in the provided UCF file. A port with a LOC constraint is
mapped to the corresponding FPGA IOB. A port without a LOC constraint is mapped to
the hardware co-simulation interface and is accessible from the HDL test bench.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
16 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2: Tutorial

The partitioning of a design into a free-running portion and a lock-step portion happens
implicitly based on how clock ports are mapped. If a clock port is mapped to an FPGA
IOB via a LOC constraint, the logic driven by this clock belongs to the free-running
portion. If a clock port has no LOC constraint assigned, the hardware co-simulation
interface toggles the value on this port when a corresponding clock event occurs in the
test bench. The logic driven by this clock thus belongs to the lock-step portion.

Since the free-running and lock-step portion run at different speeds with separate
clocks, the design should handle clock domain crossing between the two portions. The
ISim hardware co-simulation compilation does not modify the internal of the design,
and thus it assumes the design can handle the speed difference and synchronization
between the two portions.

The following table lists the ports on the mig_dut module that are mapped to external
I/Os, and those are controlled by the test bench.

Partitioning ports on the mig_dut module
Ports mapped to external I/Os Ports controlled by the test bench

c3_sys_clk_p
c3_sys_clk_n
mcb3_dram_dq
mcb3_dram_a
mcb3_dram_ba
mcb3_dram_ras_n
mcb3_dram_cas_n
mcb3_dram_we_n
mcb3_dram_odt
mcb3_dram_cke
mcb3_dram_ck
mcb3_dram_ck_n
mcb3_dram_dqs
mcb3_dram_dqs_n
mcb3_dram_udqs
mcb3_dram_udqs_n
mcb3_dram_udm
mcb3_dram_dm
rzq3 zio3

c3_sys_rst_n
c3_clk0
c3_rst0
c3_calib_done
c3_p0_cmd_en
c3_p0_cmd_instr
c3_p0_cmd_bl
c3_p0_cmd_byte_addr
c3_p0_cmd_empty
c3_p0_cmd_full
c3_p0_wr_en
c3_p0_wr_mask
c3_p0_wr_data
c3_p0_wr_full
c3_p0_wr_empty
c3_p0_wr_count
c3_p0_wr_underrun
c3_p0_wr_error
c3_p0_rd_en
c3_p0_rd_data
c3_p0_rd_full
c3_p0_rd_empty
c3_p0_rd_count
c3_p0_rd_overflow
c3_p0_rd_error

The MIG tool creates an example UCF file,
ipcore_dir/mig/user_design/par/mig.ucf. We are going to use it as a template
to create the custom constraints file for hardware co-simulation.
1. Copy ipcore_dir/mig/user_design/par/mig.ucf to the ISim

project directory where mig_dut.v is located. Name the copied file as
mig_dut_hwcosim.ucf.

2. Modify the mig_dut_hwcosim.ucf file as follows for the SP601 board. Change
the period constraint of TS_SYS_CLK3 to 5 ns as we use the 200 MHz differential
clock input on the SP601 as the system clock.

TIMESPEC "TS_SYS_CLK3" = PERIOD "SYS_CLK3" 5 ns HIGH 50 %;

Change the LOCconstraint for c3_sys_clk_n to K16, and c3_sys_clk_p to K15
to match the pin assignments on SP601.

NET "c3_sys_clk_n" LOC = "K16";
NET "c3_sys_clk_p" LOC = "K15";

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 17

Chapter 2: Tutorial

3. Modify the mig_dut_hwcosim.ucf file for ISim hardware co-simulation
requirements.

Add a wildcard character * at the beginning of the hierarchical path for the following
constraints. This is required because the mig_dut will be wrapped as a submodule
when it is compiled for hardware co-simulation.

NET "*memc?_wrapper_inst/mcb_ui_top_inst/mcb_raw_wrapper_inst/selfrefresh_mcb_mode" TIG;
NET "*c?_pll_lock" TIG;
NET "*memc?_wrapper_inst/mcb_ui_top_inst/mcb_raw_wrapper_inst/gen_term_calib.mcb_soft_calibration_top_inst/

mcb_soft_calibration_inst/CKE_Train" TIG; ##This path exists for DDR2
NET "*memc3_infrastructure_inst/sys_clk_ibufg" TNM_NET = "SYS_CLK3";

Comment out the constraints for error, calib_done, and c3_sys_rst_n,
especially the LOCconstraints, as it will be controlled from the test bench.

#NET "error" IOSTANDARD = LVCMOS18 ;
#NET "calib_done" IOSTANDARD = LVCMOS18 ;
#NET "calib_done" LOC = "B2" ;
#NET "error" LOC = "A2" ;

#NET "c3_sys_rst_n" IOSTANDARD = LVCMOS18;
#NET "c3_sys_rst_n" LOC = "M8" ;

Note The c3_clk0, c3_rst0, c3_calib_done, c3_p0_* ports on the mig_dut
are not constrained because they are also controlled from the test bench.

Step 4: Compiling the Design for Hardware Co-Simulation
Once you have created the test bench and the custom constraints file, you can compile
the design for hardware co-simulation using the ISim compiler. This can be done
in Project Navigator by enabling hardware co-simulation on a selected instance in
your design. The selected instance, including its submodules, will be co-simulated in
hardware during the ISim simulation. Other modules will be simulated in software.

1. Switch to the Simulation View in Project Navigator. Right click on themig_inst -
mig_dut instance from the Hierarchy view and click Source Properties.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
18 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2: Tutorial

2. Select the Hardware Co-Simulation category. Check the Enable Hardware
Co-Simulation checkbox. Set the Clock Port to c3_clk0. Select SP601 (JTAG) as the
Target Board for Hardware Co-Simulation.

Note Note that the instance enabled for hardware co-simulation is now marked
with a special icon .

The Enable Incremental Implementation option can be used after the design
has been compiled for hardware co-simulation once. If the instance selected for
hardware co-simulation does not change in subsequent runs, you can turn on this
option to skip the synthesis, implementation, and bitstream generation for hardware
co-simulation. It allows the test bench or any portion simulated in software to be
modified and simulated again quickly.

3. Select themig_hw_tb instance from the Hierarchy view. Go to the Processes view,
right click on Simulate Behavioral Model and click Process Propertie.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 19

Chapter 2: Tutorial

4. Change the Property display level to Advanced. Set the following properties for the
Simulate Behavioral Model process:

• Check Use Custom Simulation Command File

• Set Custom Simulation Command File to init.tcl

• Check Use Custom Waveform Configuration File

• Set Custom Waveform Configuration File tomig_hw_tb.wcfg

• Set Other Compiler Options to -hwcosim_constraints mig_dut_hwcosim.ucf

The init.tcl script is executed when the ISim simulation starts. It loads a Tcl
command testmem from the testmem.tcl script, which will be used later
in this tutorial to run the simulation.

The mig_hw_tc.wcfg file provides a customized waveform configuration
view for this tutorial.

Note The custom constraints file for hardware co-simulation is provided to
the ISim compiler through the hwcosim_constraints switch. This property is
currently not accessible in the Project Navigator GUI, so that we specify it
through the Other Compiler Options.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
20 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2: Tutorial

• Run the Simulate Behavioral Model process for themig_hw_tb instance.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 21

Chapter 2: Tutorial

Using the Fuse Command Line Tool
The ISim compiler can be invoked through the Fuse command line tool. As in the pure
software simulation flow, you need to provide Fuse a project file, the design top level
module(s), and other optional arguments such as libraries to link in and library search
paths. To compile the design for hardware co-simulation, you need to provide the extra
arguments listed below:

fuse -prj <project file> <top level modules>
-hwcosim_instance <instance>
-hwcosim_clock <clock>
-hwcosim_board <board>
-hwcosim_constraints <constraint file>
-hwcosim_incremental <0|1>

• hwcosim_instance specifies the full hierarchical path of the instance to co-simulate
in hardware

• hwcosim_clock specifies the port name of the clock input for the instance.
– This is the clock in the lock-step portion, which is to be controlled by the test

bench.
– For a design with multiple clocks, specify the fastest clock using this option so

that ISim can optimize the simulation. Other clock ports are treated as regular
data ports.

• hwcosim_board specifies the identifier of the hardware board to use for
co-simulation. Two Spartan®-6 boards are supported by default:
– sp601-jtag: Xilinx® SP601 Evaluation Platform
– sp605-jtag: Xilinx SP605 Evaluation Platform

• hwcosim_constraints (optional) specifies the custom constraints file that provides
additional constraints for implementing the instance for hardware co-simulation.
We also use the constraints file to specify which ports of the instance are mapped to
external I/Os or clocks.

• hwcosim_incremental (optional) specifies whether Fuse should reuse the last
generated hardware co-simulation bitstream and skip the implementation flow.

For example, to compile the EMAC design for this tutorial, you can run the Fuse
command line as follows:

fuse -prj mig_hw_tb.prj mig_hw_tb glbl
-L unisims_ver –L secureip
–o mig_hw_tb.exe
-hwcosim_instance /mig_hw_tb/mig_inst
-hwcosim_clock c3_clk0
-hwcosim_board sp601-jtag
-hwcosim_constraints mig_dut_hwcosim.ucf

Step 5: Running ISim Hardware Co-Simulation
The simulation executable generated by the ISim compiler runs in the same way in
both the pure software simulation and hardware co-simulation flow. Project Navigator
automatically launches the simulation executable in GUI mode after the compilation
finishes.

In the Instances and Processes view, the instance selected for hardware co-simulation is
indicated with a special icon . As the instance runs in hardware, you cannot expand it
to see its internal signals and submodules.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
22 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2: Tutorial

Before the simulation starts, ISim programs the FPGA with the bitstream file generated
for hardware co-simulation. You may notice the message in the ISim console window:
“Downloading bitstream, please wait till status is READY”. Once the FPGA is
configured, the console shows “Bitstream download is complete. READY for
simulation.” From this point, you can run the simulation and interact with the ISim GUI
the same way you do in the software simulation flow.

The test-bench initially resets the system by asserting the c3_sys_rst_n signal, which
then triggers the memory calibration process. You should see the following messages
from the ISim console:

System reset done
Memory calibration done

The c3_calib_done signal transits from low to high quickly after the reset is de-asserted.
This is because the memory calibration process takes place in hardware at full speed. It
takes a much longer time if the calibration process is simulated in software.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 23

Chapter 2: Tutorial

Select theMemory tab. Double-click on the input_data array to open the memory editor.
Change the Address Radix and Value Radix to Hexadecimal. You can edit the content
of the input_data and then use that to write to the external memory.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
24 www.xilinx.com UG818 (v 13.1) March 18, 2011

Chapter 2: Tutorial

Run “testmem 0 1024 0” from the ISim console. This triggers the test_memory task
in the test bench, which writes the data in input_data to the external memory starting
from address 0 to 1024, and then reads the data back from the same memory region to
output_data. You should see the following messages from the ISim console:

Read/write test started
... Writing 00000000
... Reading 00000000
==> No data mismatches found.
Read/write test done

Observe the waveform of c3_p0_cmd_*, c3_p0_wr_*, and c3_p0_rd_* to see
how the test bench interacts with the MCB and how the MCB status signals (such as
c3_p0_wr_count) changes during the memory write/read transaction.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 25

Chapter 2: Tutorial

Try different data pattern, starting and ending addresses using the testmem command.
For example:

• “testmem 0 2048 1” tests the memory region from address 0 to 2048 with a
walking zeros pattern.

• “testmem 1024 4096 2” tests the memory region from address 1024 to 4096
with a walking ones pattern.

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
26 www.xilinx.com UG818 (v 13.1) March 18, 2011

Appendix

Additional Resources
• Global Glossary -

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

• Xilinx Documentation - http://www.xilinx.com/support/documentation

• Xilinx Support - http://www.xilinx.com/support

Tutorial: Interacting with the Spartan-6 Memory Controller and On-Board DDR2 Memory
UG818 (v 13.1) March 18, 2011 www.xilinx.com 27

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=glossary
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

	Table of Contents
	Chapter 1 Introduction
	Prerequisites
	Tutorial Files

	Chapter 2 Tutorial
	Step 1: Generating a Design Using the MIG Tool
	Step 2: Creating a Test Bench
	Step 3: Creating a Custom Constraints File
	Partitioning the Design into Lock-step and Free-running Portion
	Mapping Ports to External I/Os and Clocks

	Step 4: Compiling the Design for Hardware Co-Simulation
	Using the Fuse Command Line Tool

	Step 5: Running ISim Hardware Co-Simulation

	Appendix Additional Resources

