

Vivado Design Suite
Tutorial

Using Constraints

UG945 (v2012.2) August 20, 2012

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of
the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates
to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without
prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at
http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by
Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you
assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

©Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective
owners.

Revision History
Date Version Revision

08/6/2012 2012.2 First publication.

08/20/2012 2012.2 Updated Step 4: Reporting Clock Interactions to add details of the primary clock (sysClk)
interaction with generated clocks.

http://www.xilinx.com/warranty.htm�
http://www.xilinx.com/warranty.htm%23critapps�

Using Constraints www.xilinx.com 3
UG945 (v2012.2) August 20, 2012

Table of Contents
Vivado Using Constraints Tutorial ... 4

Overview .. 4

Software Requirements .. 5

Hardware Requirements .. 5

Tutorial Design Description .. 5

Preparing the Tutorial Design Files .. 5

Lab #1: Using the Timing Constraint Editor ... 6

Step 1: Opening the Example Project ... 6

Step 2: Defining Constraint Sets and Files .. 7

Step 3: Using a Timing Constraint Wizard .. 9

Step 4: Reporting Clock Interactions .. 13

Step 5: Saving Constraints.. 13

Step 6: Using the Timing Constraint Spreadsheet .. 15

Summary ... 18

Lab #2: Setting Physical Constraints .. 19

Step 1: Opening the Example Project .. 19

Step 2: Adding Placement Constraints .. 20

Step 3: Defining Additional Physical Constraints .. 22

Step 4: Defining Constraints with Cell Properties ... 23

Step 5: Saving Constraints.. 25

Summary ... 26

http://www.xilinx.com/�

Using Constraints www.xilinx.com 4
UG945 (v2012.2) August 20, 2012

Vivado Using Constraints Tutorial

Overview
This tutorial is comprised of various labs, each of which seeks to demonstrate an aspect of
constraining a design in the Xilinx® Vivado™ Integrated Design Environment (IDE). In Vivado,
the constraints format is called Xilinx Design Constraints (XDC), which is a combination of the
industry standard Synopsys® Design Constraints and proprietary Xilinx constraints.

XDCs are not just simple strings; they are TCL commands that the Vivado Tcl interpreter
sequentially reads and parses just like any Tcl command. You can enter design constraints in
several ways at different points in the design flow. You can store XDCs in one or more files that
can be added to a constraint set in Vivado Project Mode, or directly read the same files into
memory using the read_xdc command in Non-Project Mode. For more information on Project
and Non-Project Modes, refer to the Vivado Design Suite User Guide: Design Flows Overview
(UG892). With a design open in Vivado, you can also type constraints as commands directly in
the Tcl console or at the Tcl command prompt. This is particularly powerful for defining,
validating and debugging new constraints interactively in the design.

The Vivado Design Suite synthesis and implementation tools are timing driven. Having accurate
and correct timing constraints is vital for meeting design goals and ensuring correct operation.
Because the Vivado tools are timing driven, it is important to fully constrain a design, but not
over-constrain, or under-constrain it. Over-constraining a design can lead to long run-times and
sub-optimal results because the tool can struggle with unrealistic design objectives. Under
constraining a design can cause the Vivado tools to perform unnecessary optimizations, such as
examining paths with multicycle delays or false paths, and prevent focus on the real critical
paths.

This tutorial discusses different methods for defining and applying design constraints. The labs
included in this tutorial are:

• Lab #1: Using the Timing Constraint Editor

• Lab #2: Using the Tcl Console

http://www.xilinx.com/�

 Software Requirements

Using Constraints www.xilinx.com 5
UG945 (v2012.2) August 20, 2012

Software Requirements
This tutorial requires that the 2012.2 Vivado Design Suite software release or later is installed.

Hardware Requirements
The supported Operating Systems include Redhat 5.6 Linux 64 and Windows 64 and 32 bit.

Xilinx recommends a minimum of 2 GB of RAM when using the Vivado tool.

Tutorial Design Description
The sample design used throughout this tutorial consists of a small design called
project_cpu_netlist. There is a top-level EDIF netlist source file, as well as an XDC
constraints file.

The design targets an XC7K70T device. A small design is used to allow the tutorial to be run with
minimal hardware requirements and to enable timely completion of the tutorial, as well as to
minimize the data size.

Preparing the Tutorial Design Files
You can find the files for this tutorial in the Vivado Design Suite examples directory at the
following location:

• <Xilinx_2012.2_install_area>/Vivado/<version>/examples/Vivado_Tutorial

You can also extract the provided zip file, at any time, to write the tutorial files to your local
directory, or to restore the files to their starting condition.

Extract the zip file contents from the software installation into any write-accessible location.

• <Xilinx_2012.2_install_area>/Vivado/<version>/examples/Vivado_Tutorial.zip

The extracted Vivado_Tutorial directory is referred to as the <Extract_Dir> in this Tutorial.

Note: You will modify the tutorial design data while working through this tutorial. You should
use a new copy of the original Vivado_Tutorial directory each time you start this tutorial.

http://www.xilinx.com/�

 Step 1: Opening the Example Project

Using Constraints www.xilinx.com 6
UG945 (v2012.2) August 20, 2012

Lab #1: Using the Timing Constraint Editor

In this lab, you will learn two methods of creating constraints for a design. You will be using the
CPU Netlist example design that is included in the Vivado IDE.

Step 1: Opening the Example Project
1. Start by loading Vivado IDE.

• Launch Vivado IDE from the icon on the Windows desktop, or

• Type vivado from a command terminal.

2. From the Getting Started page, click Open Example Project and select the CPU
(Synthesized) design.

Figure 1: Open Example Design

3. The design project opens in the Vivado IDE, and a dialog box opens stating that the project
is read-only and prompting you to save the project to a new location.

Figure 2: Read-Only Project

4. Select Save Project As and specify a project name and location.

Figure 3: Save Project As...

http://www.xilinx.com/�

 Step 2: Defining Constraint Sets and Files

Using Constraints www.xilinx.com 7
UG945 (v2012.2) August 20, 2012

The project saves to the specified location.

The Vivado IDE displays project information in the Project Summary window. Because this is
a netlist project, there are no options for synthesis in the Flow Navigator. The Project
Summary window shows that the next step in the design flow is Vivado implementation.

Figure 4: Project Summary window

Step 2: Defining Constraint Sets and Files

Important! The Vivado Design Suite does not support the UCF format. For information
on migrating UCF constraints to XDC commands refer to the Vivado Design Suite
Migration Methodology Guide (UG912).

Start by creating a new constraint set and adding an empty XDC constraints file to it. The sample
design already contains two constraint sets, but you do not use them for this lab.

1. From the Flow Navigator, select Add Sources in the Project Manager section.

2. From the list displayed in the Add Sources dialog box, select Add or Create Constraints and
click Next.

http://www.xilinx.com/�

 Step 2: Defining Constraint Sets and Files

Using Constraints www.xilinx.com 8
UG945 (v2012.2) August 20, 2012

3. From the Add or Create Constraints dialog box, use the Specify Constraint Set: drop down
menu, and select Create Constraint Set as shown below.

Figure 5: Create Constraint Set

4. In the Create Constraint Set Name dialog box, specify the constraint set name as lab1 and
click OK.

5. Enable the Make active checkbox.

6. Select Create File to add a new XDC file to the project. Enter timing as the file name, leave
the file as <Local to Project>, and click OK.

Figure 6: Constraints File Name

The timing.xdc file is added to the lab1 constraint set.

7. Select Finish to complete the creation of the new constraint set and XDC file.

You should see the new constraint set and XDC file in the Sources window as shown below.
The constraint set is made active as you directed when you created it.

Figure 7: Sources window

http://www.xilinx.com/�

 Step 3: Using a Timing Constraint Wizard

Using Constraints www.xilinx.com 9
UG945 (v2012.2) August 20, 2012

Step 3: Using a Timing Constraint Wizard
Now open the synthesized design, and create some new timing constraints in the design. You
will create a clock for this design, since you need one or more clocks in order to do timing
analysis, and to perform timing driving place and route.

1. From the Flow Navigator, select Open Synthesized Design.

The synthesized netlist opens with the Device window displayed.

2. Select Edit Timing Constraints from the Flow Navigator under the Netlist Analysis section.
The Vivado IDE displays the Timing Constraints window.

There are three sections to the Timing Constraints window:

• Constraints tree view: Located in the upper-left of the Timing Constraints window, as
shown in Figure 8: Timing Constraints window. This section displays standard timing
constraints, grouped by category. Double-clicking on a constraint in this section opens a
Constraints wizard to help you define the selected constraint.

• Constraints Spreadsheet: Located in the upper right of Figure 8. This section displays
timing constraints of the type currently selected in the Constraints tree view. You can use
this to directly define or edit constraints instead of the Constraints wizard if you prefer.

• All Constraints: Located at the bottom of the Timing Constraints window, this section
displays all the currently defined timing constraints in the design.

Figure 8: Timing Constraints window

http://www.xilinx.com/�

 Step 3: Using a Timing Constraint Wizard

Using Constraints www.xilinx.com 10
UG945 (v2012.2) August 20, 2012

3. Under the Clocks heading of the Constraints tree view, double-click Create Clock. This
opens the Create Clock wizard as shown below.

Figure 9: Create Clock wizard

a. Enter sysClk for the Clock name.

The clock name can be any name, and does not have to match any element of the design
(port or pin); it is just a name. However, typically the name of a primary clock matches
the name of its input port.

b. For the Source Objects field select the browse button () to bring up the Specify Clock
Sources Objects search window as shown in Figure 10: Specify Clock Sources.

http://www.xilinx.com/�

 Step 3: Using a Timing Constraint Wizard

Using Constraints www.xilinx.com 11
UG945 (v2012.2) August 20, 2012

Figure 10: Specify Clock Sources

c. Check that Find Name of type: is set to ports.

d. Change the “With pattern” from “*” to “*Clk” and click the Find button.

sysClk should appear under Find results.

e. Select sysClk, and click the directional (right) green arrow to move it under Selected
names.

Tip: You can also double-click sysClk to move it from Find results to Selected
names.

Notice that the Command field displayed at the bottom of the dialog box changes as
you perform these different actions. The get_ports command changes to:
get_ports {sysClk}

f. Select OK to finish specifying the clock sources, and return to the Create Clock wizard.

The Create Clock wizard should now look as shown in Figure 9: Create Clock wizard.
Accept the default values of the Waveform section, a period of 10ns with a 50% duty
cycle. You can change these values as needed by using the up and down arrows, or by
directly typing values. Notice the Command: field at the bottom of the window:
create_clock –period 10.000 –name sysClk –waveform {0.000 5.000}
[get_ports {sysClk}]

http://www.xilinx.com/�

 Step 3: Using a Timing Constraint Wizard

Using Constraints www.xilinx.com 12
UG945 (v2012.2) August 20, 2012

The Vivado IDE displays the Tcl command form of all constraints created by design
wizards for your review. This is useful for learning the Tcl command syntax, and for
verifying the final constraint before adding it.

g. Click OK to close the Create Clock wizard, and create the sysClk clock constraint as
shown in Figure 11: The Added sysClk Constraint.

Figure 11: The Added sysClk Constraint

You see under the Constraints tree view that one Create Clock constraint has been added,
indicating that the design has one clock. You can see the various properties of the sysClk
you created in the other sections of the Timing Constraints window as well.

4. Click Apply at the bottom of the Timing Constraints window to save the sysClk constraint,
and update the in-memory design with any new or changed constraints.

Important! You must use the Save Constraints command to save any constraint changes
to the timing.xdc file.

http://www.xilinx.com/�

 Step 4: Reporting Clock Interactions

Using Constraints www.xilinx.com 13
UG945 (v2012.2) August 20, 2012

Step 4: Reporting Clock Interactions
You can now report the interactions between the different clocks in the design, including the
sysClk you defined in the prior step.

1. In the Netlist Analysis section of the Flow Navigator, select Report Clock Interaction and
click OK in the Report clock Interaction dialog box to accept the default settings.

The Vivado IDE generates a graphical matrix showing the relationship of the various clocks in
the design. For this design the primary clock (sysClk) connects to an MMCM, which
generates six additional clocks. The clock interactions shown are between these generated
clocks. The sysClk is not shown because there are no interactions between it and the other
clocks; it does not launch signals that are captured by another clock, and does not capture
signals launched by another clock.

Figure 12: Clock Interaction report

Step 5: Saving Constraints
You have now created a primary clock for the design, but the constraint exists only in the Vivado
Design Suite in-memory design. You have not yet saved the constraint to the timing.xdc file.

Notice that when you create the clock constraint, the Save Constraints icon is
enabled.

http://www.xilinx.com/�

 Step 5: Saving Constraints

Using Constraints www.xilinx.com 14
UG945 (v2012.2) August 20, 2012

1. Click the Save Constraints icon.

The No Target Constraints File dialog box opens. This is because, although the timing.xdc
file is in the lab1 constraint set, it is not the target constraint file. You can save the
constraints to an existing file, or create a new one.

2. Select the existing timing.xdc file as shown below, and click OK.

Figure 13: No Target Constraints File

Note: After you save the constraints, the Save Constraints icon becomes disabled, indicating
the constraint files are up-to-date.

3. Double-click on the timing.xdc file in the lab1 constraint set, in the Sources window.

The timing.xdc opens in the Vivado text editor, and shows the create_clock command
with context-sensitive text coloring.

Figure 14: timing.xdc file

Tip: The Vivado IDE can be customized to support any of a number of third party
text editors. Refer to the Vivado Design Suite User Guide: Using the Integrated
Design Environment (UG893) for more information.

http://www.xilinx.com/�

 Step 6: Using the Timing Constraint Spreadsheet

Using Constraints www.xilinx.com 15
UG945 (v2012.2) August 20, 2012

Step 6: Using the Timing Constraint Spreadsheet
You can create other timing constraints following the process described in Step 3: Creating Clock
Constraints. You can also enter constraints directly into the spreadsheet of the Timing
Constraints window, as shown in Figure 11: The Added sysClk Constraint.

By default, the Vivado IDE does not time paths to or from I/O ports in the design. You must first
assign input/output delay constraints to the ports. In this step you assign an input delay onto
the or1200_clmode port. Before that though, generate a custom timing report for paths
starting from this port.

1. Select Tools > Timing > Report Timing to bring up the Report Timing dialog box.

Figure 15: Report Timing command

The report Timing dialog box opens as shown in Figure 16. To report timing from the specific
input port, set the From field as follows: get_ports {or1200_clmode}

You can type the get_ports command directly into the Start Points From field, or use the

browse button (), and search for the specific port in the Choose Start Points dialog box.

Figure 16: Report Timing dialog box

http://www.xilinx.com/�

 Step 6: Using the Timing Constraint Spreadsheet

Using Constraints www.xilinx.com 16
UG945 (v2012.2) August 20, 2012

Tip: Find names of type port, and specify With Pattern or1200* to find the desired
input port in the Chose Start Points dialog box.

Notice the complete Tcl command in the Command field at the bottom of the Report Timing
dialog box.

2. Click OK to generate the timing report.

The Timing tab displays at the bottom of the Vivado IDE, showing the 10 worst Setup
violations, and 10 worst Hold violations. All of the reported violations have an infinite slack.
In the Source Clock column you can see “input port clock”, as shown in Figure 17. Timing for
these unconstrained paths is not considered.

Figure 17: Report Timing Results

Look in the Tcl Console to see the run details of the report_timing command.

3. Use the Window > Timing Constraints command to open the Timing Constraints window if
it is not currently open.

4. In the Timing Constraints window, select Set Input Delay from the Inputs heading of the
Constraints tree view.

Figure 18: Set Input Delay

http://www.xilinx.com/�

 Step 6: Using the Timing Constraint Spreadsheet

Using Constraints www.xilinx.com 17
UG945 (v2012.2) August 20, 2012

Notice that the Constraints spreadsheet displays different columns for Set Input Delay than
for the Create Clock constraint as shown in Figure 8.

5. Double-click in the Constraint spreadsheet to manually enter values for the
set_input_delay constraint.

Enter the following values under the specified columns:

• Clock: sysClk

• Delay Value: 1 ns

• Objects: [get_ports {or1200_clmode}]

You can directly type the get_ports command in the Objects column, or you can use the

browse button () to open the Specify Delay Objects dialog box to search for the
or1200_clmode port.

Tip: Find names of type port, and specify With Pattern or1200* to find the desired
input port in the Specify Delay Objects dialog box.

The Constraint spreadsheet should look like Figure 18: Set Input Delay when complete. The

icon next to the constraint, which is also displayed in the All Constraints section,.
indicates the command has not yet been applied to the design.

6. To apply the constraint to the in-memory design click the Apply button at the bottom of the
Timing Constraints window.

7. Go to the Tcl Console and press the up-arrow key to scroll through the transcripted Tcl
commands to find the report_timing command you previously ran, and re-run it here.

Figure 19: Report Timing Success

Notice that you now see values in the Slack column, and have Source and Destination Clock
values for each path. During implementation, these paths are considered.

Also, notice that the Save Constraints icon is enabled again since there is a new constraint
that you have not yet saved to a file. Pressing this will write the set_input_delay

http://www.xilinx.com/�

 Summary

Using Constraints www.xilinx.com 18
UG945 (v2012.2) August 20, 2012

command to the end of the timing.xdc. This file was set as the target when you saved the
create_clock command earlier.

8. Exit the Vivado IDE, or keep it open and continue to Lab #2: Using the Tcl Console.

Summary
You have learned how to add timing constraints to a design using a constraint wizard and the
Constraints spreadsheet from the Timing Constraints window in the Vivado IDE.

You can also use the Tcl Console to interactively add and apply constraints to the design as Tcl
commands.

Still another approach is to work directly with the XDC file to create design constraints.

http://www.xilinx.com/�

 Step 1: Opening the Example Project

Using Constraints www.xilinx.com 19
UG945 (v2012.2) August 20, 2012

Lab #2: Setting Physical Constraints

In this lab, you will create physical constraints for the CPU Netlist sample design, to demonstrate
that actions in the GUI produce Tcl commands. The interactive capabilities of the Tcl Console
allow exploration of a design, and experimentation and analysis. Complex operations are easily
scripted for repeated use, even for inclusion at various stages of the flow.

Step 1: Opening the Example Project

Tip: If you are continuing from Lab #1, and your example project is still open, you can
skip ahead to Step 2.

1. Start by loading Vivado IDE.

• Launch Vivado IDE from an icon on the Windows desktop, or

• Type vivado from a command terminal.

2. From the Getting Started page, click Open Example Project and select the CPU
(Synthesized) design.

Figure 20: Open Example Design

3. The design project opens in the Vivado IDE, and a dialog box opens stating that the project
is read-only and prompting you to save the project to a new location.

Figure 21: Read-Only Project

http://www.xilinx.com/�

 Step 2: Adding Placement Constraints

Using Constraints www.xilinx.com 20
UG945 (v2012.2) August 20, 2012

4. Select Save Project As… and specify a project name and location.

Figure 22: Save Project As...

The project saves to the specified location.

Step 2: Adding Placement Constraints
Open the Synthesized Design, explore some of the design hierarchy, and begin placing logic
elements to create physical constraints.

1. From the Flow Navigator, select Open Synthesized Design.

The synthesized netlist opens with the Device window displayed.

2. Select the Netlist window and expand the clkgen hierarchy.

3. Expand the Primitives folder and select the mmcm_adv_inst (MMCME2_ADV) cell.

Figure 23: Netlist window

http://www.xilinx.com/�

 Step 2: Adding Placement Constraints

Using Constraints www.xilinx.com 21
UG945 (v2012.2) August 20, 2012

4. Look in the Properties view, under the Attributes tab, and notice that there are no
IS_LOC_FIXED or IS_BEL_FIXED attributes shown.

5. Check this in the Tcl Console by typing:
get_property IS_LOC_FIXED [get_cells clkgen/mmcm_adv_inst]

This returns a zero, indicating the object is not fixed to a location.

6. Zoom into the bottom right of the Device view, to display the lower half of Clock Region
X1Y0, to prepare for placing the selected object.

7. In the Netlist window, click on the mmcm_adv_inst and drag it into the Device window to
place it into the bottom right MMCME2_ADV.

Figure 24:Placing the MMCM

Look in the Tcl Console. You should see these three commands:
startgroup
place_cell clkgen/mmcm_adv_inst MMCME2_ADV_X1Y0/MMCME2_ADV
endgroup

The startgroup and endgroup Tcl commands bracket sequences of commands to
support the undo function in the Vivado tools. If you make a mistake, you can use the undo
command in the Tcl Console. This will undo the placement and allow you to redo it. For
more information on startgroup, endgroup, and undo, refer to the Vivado Design Suite
Tcl Command Reference Guide (UG835).

8. Look again at the Attributes tab in the Properties window for the MMCM cell you placed.

Notice the IS_BEL_FIXED and IS_LOC_FIXED attributes, reflecting that the object has
been placed.

http://www.xilinx.com/�

 Step 3: Defining Additional Physical Constraints

Using Constraints www.xilinx.com 22
UG945 (v2012.2) August 20, 2012

Tip: The Instance Drag and Drop mode in the Device window determines whether
only IS_LOC_FIXED is set, or IS_BEL_FIXED is also set, when placing objects.
Refer to the Vivado Design Suite User Guide: Using the Integrated Design
Environment (UG893) for more information on using the Device window.

Figure 25:BEL and LOC Placement Constraints

The IS_BEL_FIXED and IS_LOC_FIXED attributes on the object are physical constraints
reflecting the placement of the object. These constraint are used by Vivado implementation,
and will not be changed by the tool. However, if the attributes are invalid, they will cause
errors downstream in the design flow.

Notice that when you place the mmcm_adv_inst in the Device window, the
Save Constraints icon is enabled. The physical constraints are added to the
Vivado tool in-memory design, but are not yet saved to the target constraint file.

Step 3: Defining Additional Physical Constraints
In this step you will define additional physical constraints to the design, such as the
PACKAGE_PIN, and PROHIBIT constraints.

1. Select the I/O Planning view layout from the Layout Selector in the tool bar menu.

Figure 26: Layout Selector

http://www.xilinx.com/�

 Step 4: Defining Constraints with Cell Properties

Using Constraints www.xilinx.com 23
UG945 (v2012.2) August 20, 2012

The I/O Planning view layout displays the Package window, as well as the I/O Ports and
Package Pins windows, to facilitate planning the I/O port assignment for the design.

For the purposes of this tutorial, assume the PCB layout has been completed, and therefore
certain pins are not accessible on the FPGA package. You can prohibit the Vivado tool from
using these pins during placement and routing (assuming you have not already specified all
of your I/O assignments).

2. Select the AA8 pin in the Package window.

Use the X and Y-axis values, on the edge of the Package window, to help you locate this pin
on the package.

3. With the pin selected, right-click and select Set Prohibit.

Figure 27: Set Prohibit

When you unselect the pin, you will notice the site now has a red circle with a diagonal line
through it, indicating it is unusable.

4. Look in the Tcl Console and review the TCL command produced by the Vivado IDE:
set_property prohibit 1 [get_sites AA8]

Step 4: Defining Constraints with Cell Properties
You can create timing and placement constraints as you have seen in this tutorial, but you can
also change the properties of cells, to control how they are handled by Vivado implementation.
Many physical constraints are defined as properties on a cell object.

For example, if you discover a timing issue with a RAM in the design. You can change a property
of the RAM cell to add in pipeline registers. After confirming with the designer and validation
teams that this is an acceptable approach, you can change the design.

Because it might be too costly to go back to the RTL after synthesis, you can make the change in
the netlist as follows.

http://www.xilinx.com/�

 Step 4: Defining Constraints with Cell Properties

Using Constraints www.xilinx.com 24
UG945 (v2012.2) August 20, 2012

Figure 28: Find dialog box

1. Select Edit > Find to open the Find dialog box, as shown in Figure 28, and search for Block
RAMs.

a. Specify Find Instances.

b. Under Criteria, specify Type is Block Ram

c. Click OK

The Find Results window displays.

2. Select the first reported cell, which should be the RAMB36E1 cell:
fftEngine/fftInst/ingressLoop[7].ingressFifo/…

In the Attributes tab of the Instance Properties window, you can see the DOA_REG and
DOB_REG are set to zero, indicating that the output registers are disabled.

3. Generate a custom timing report from this cell, either from Tools > Timing > Report
Timing or directly from the Tcl Console.

The Tcl command is:
report_timing -from [get_cells
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo/infer_fifo.block_
ram_performance.fifo_ram_reg]

Tip: You can copy and paste the cell name from the General tab of the Instance
Properties window into the Tcl console.

In the data path section of the report, 1.800ns is added for this RAM.

4. In the Attributes tab of the Instance Properties window, select the DOA_REG and DOB_REG
properties for this cell, and change their values from “0” to “1”.

5. Click the Apply button in the Instance Properties window.

You can see the two set_property commands run in the Tcl Console.

http://www.xilinx.com/�

 Step 5: Saving Constraints

Using Constraints www.xilinx.com 25
UG945 (v2012.2) August 20, 2012

Because these are properties on objects, and not directly defined as timing constraints, you
must update the timing data in the Vivado tools, and rerun the timing report, to see these
property changes have an effect.

6. Update the timing by typing the following in the Tcl Console:
update_timing -full

7. Rerun the timing report from the selected cell. The Tcl command will be:
report_timing -from [get_selected_objects]

Notice that the data path delay for the RAM is now 0.622ns.

Next, set the configuration mode on the design. This is another property that is a physical
constraint, in this case of the design rather than of a cell. To begin, list all of the properties on
the current design.

1. List the properties of the design in the Tcl Console:
list_property [current_design]

This command returns the list of all properties in the current design. To make the list more
readable, you can use the standard Tcl join command to combine the properties output
with “\n” newline character, resulting in each property displaying on a separate line.
join [list_property [current_design]] \n

2. The specific property of interest is CONFIG_MODE. To see what values this particular property
can accept, use the list_property_value Tcl command:
join [list_property_value CONFIG_MODE [current_design]] \n

3. Set the CONFIG_MODE property to M_SERIAL for this project:
set_property CONFIG_MODE M_SERIAL [current_design]

The configuration mode has now been set.

4. Use the get_property command to check that the CONFIG_MODE property was correctly set:
get_property CONFIG_MODE [current_design]

The property value M_SERIAL is returned by the Vivado tool.

Step 5: Saving Constraints
Notice that the Save Constraints icon is enabled because there are new design
constraints. The cell and design properties you modified in Lab #2 have been added to
the Vivado tool in-memory design, but are not yet saved to the target constraint file.

1. Click the Save Constraints button.

The physical constraints you defined over the course of this tutorial are saved to the target
constraint file.

http://www.xilinx.com/�

 Summary

Using Constraints www.xilinx.com 26
UG945 (v2012.2) August 20, 2012

2. Select the target XDC from the active constraint set in the Sources window, to open the file
in the Vivado IDE text editor.

Note: The specific target constraint file you open depends on whether you continued from
Lab #1, or restarted the Vivado IDE at Lab #2.

Notice that only the five set_property commands are saved to the files. Only constraints
are written to the XDC, not the object query or reporting commands.

• set_property LOC MMCME2_ADV_X1Y0 [get_cells clkgen/mmcm_adv_inst]
• set_property PROHIBIT true [get_sites AA8]
• set_property CONFIG_MODE M_SERIAL [current_design]
• set_property DOA_REG 1 [get_cells

{fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo/infer_fifo.bl
ock_ram_performance.fifo_ram_reg}]

• set_property DOB_REG 1 [get_cells
{fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo/infer_fifo.bl
ock_ram_performance.fifo_ram_reg}]

3. Exit the Vivado IDE.

Summary
In this lab, you learned how to use both the Vivado IDE and the Tcl Console to create and verify
physical constraints. Most actions performed in the IDE result in Tcl commands being run in the
Tcl Console. The Vivado IDE provides powerful interactive capabilities for developing physical
and timing constraints, which can then be saved to constraint files and reused as needed.

http://www.xilinx.com/�

	Vivado Design Suite Tutorial: Using Constraints
	Revision History
	Vivado Using Constraints Tutorial
	Overview
	Software Requirements
	Hardware Requirements
	Tutorial Design Description
	Preparing the Tutorial Design Files

	Lab #1: Using the Timing Constraint Editor
	Step 1: Opening the Example Project
	Step 2: Defining Constraint Sets and Files
	Step 3: Using a Timing Constraint Wizard
	Step 4: Reporting Clock Interactions
	Step 5: Saving Constraints
	Step 6: Using the Timing Constraint Spreadsheet
	Summary

	Lab #2: Setting Physical Constraints
	Step 1: Opening the Example Project
	Step 2: Adding Placement Constraints
	Step 3: Defining Additional Physical Constraints
	Step 4: Defining Constraints with Cell Properties
	Step 5: Saving Constraints
	Summary

