

Chapter 14

XST VHDL Language Support
This chapter:

• Explains how XST supports the VHSIC Hardware Description Language (VHDL)

• Provides details on VHDL supported constructs and synthesis options

This chapter includes:

• VHDL Logic Descriptions

• VHDL IEEE Support

• VHDL File Type Support

• VHDL Debugging Using Write Operation

• VHDL Data Types

• VHDL Record Types

• VHDL Initial Values

• VHDL Objects

• VHDL Operators

• VHDL Entity and Architecture Descriptions

• VHDL Combinatorial Circuits

• VHDL Sequential Circuits

• VHDL Functions and Procedures

• VHDL Assert Statements

• VHDL Models Defined Using Packages

• VHDL Constructs Supported in XST

• VHDL Reserved Words

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 449

Chapter 14: XST VHDL Language Support

VHDL Logic Descriptions
VHDL offers a broad set of constructs for compactly describing complicated logic:
• Allows the description of the structure of a system:

– How it is decomposed into subsystems
– How those subsystems are interconnected

• Allows the specification of the function of a system using familiar programming
language forms.

• Allows the design of a system to be simulated before being implemented and
manufactured. This feature allows you to test for correctness without the delay
and expense of hardware prototyping.

• Provides a mechanism for easily producing a detailed, device-dependent version of
a design to be synthesized from a more abstract specification. This feature allows
you to concentrate on more strategic design decisions, and reduce the overall time to
market for the design.

For more information, see:

• IEEE VHDL Language Reference Manual
• XST Design Constraints
• VHDL Attribute Syntax

VHDL IEEE Support
This section discusses VHDL IEEE Support, and includes:
• Supported VHDL IEEE Standards
• VHDL IEEE Conflicts
• Non-LRM Compliant Constructs in VHDL

Supported VHDL IEEE Standards
XST supports the following VHDL IEEE standards:
• Std 1076-1987
• Std 1076-1993
• Std 1076-2006

Note Std 1076-2006 is only partially implemented. XST allows instantiation for Std
1076-2006 as shown in the following table.

Formal Port Associated Actual
buffer out

out buffer

VHDL IEEE Conflicts
VHDL IEEE Std 1076-1987 constructs are accepted if they do not conflict with VHDL
IEEE Std 1076-1993. In case of a conflict, Std 1076-1993 behavior overrides Std 1076-1987.

In cases where:
• Std 1076-1993 requires a construct to be an erroneous case, but
• Std 1076-1987 accepts it,

XST issues a warning instead of an error. An error would stop analysis.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
450 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL IEEE Conflict Example
Following is an example of a VHDL IEEE conflict:
• Std 1076-1993 requires an impure function to use the impure keyword while

declaring a function.
• Std 1076-1987 has no such requirement.

In this case, XST:
• Accepts the VHDL code written for Std 1076-1987
• Issues a warning stating Std 1076-1993 behavior

Non-LRM Compliant Constructs in VHDL
XST supports some non-LRM compliant constructs. XST supports a specific non-LRM
compliant construct when:
• A majority of synthesis or simulation third-party tools support the construct, and
• It is a real language limitation for design coding, and has no impact on quality of

results or problem detection in the design.

For example, the LRM does not allow instantiation when the formal port is a buffer and
the effective one is an out (and vice-versa).

VHDL File Type Support
XST supports a limited File Read and File Write capability for VHDL as shown in the
following table.

Capability Usage Examples
File Read Initialize RAMs from an external file

File Write • Debug processes

• Write a specific constant or generic value to an external file

For more information, see:

Initializing RAM Coding Examples

Use any of the read functions shown in the following table. These read functions are
supported by the following packages:
• standard
• std.textio
• ieee.std_logic_textio

Function Package
file (type text only) standard

access (type line only) standard

file_open (file, name, open_kind) standard

file_close (file) standard

endfile (file) standard

text std.textio

line std.textio

width std.textio

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 451

Chapter 14: XST VHDL Language Support

Function Package
readline (text, line) std.textio

readline (line, bit, boolean) std.textio

read (line, bit) std.textio

readline (line, bit_vector, boolean) std.textio

read (line, bit_vector) std.textio

read (line, boolean, boolean) std.textio

read (line, boolean) std.textio

read (line, character, boolean) std.textio

read (line, character) std.textio

read (line, string, boolean) std.textio

read (line, string) std.textio

write (file, line) std.textio

write (line, bit, boolean) std.textio

write (line, bit) std.textio

write (line, bit_vector, boolean) std.textio

write (line, bit_vector) std.textio

write (line, boolean, boolean) std.textio

write (line, boolean) std.textio

write (line, character, boolean) std.textio

write (line, character) std.textio

write (line, integer, boolean) std.textio

write (line, integer) std.textio

write (line, string, boolean) std.textio

write (line, string) std.textio

read (line, std_ulogic, boolean) ieee.std_logic_textio

read (line, std_ulogic) ieee.std_logic_textio

read (line, std_ulogic_vector), boolean ieee.std_logic_textio

read (line, std_ulogic_vector) ieee.std_logic_textio

read (line, std_logic_vector, boolean) ieee.std_logic_textio

read (line, std_logic_vector) ieee.std_logic_textio

write (line, std_ulogic, boolean) ieee.std_logic_textio

write (line, std_ulogic) ieee.std_logic_textio

write (line, std_ulogic_vector, boolean) ieee.std_logic_textio

write (line, std_ulogic_vector) ieee.std_logic_textio

write (line, std_logic_vector, boolean) ieee.std_logic_textio

write (line, std_logic_vector) ieee.std_logic_textio

hread ieee.std_logic_textio

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
452 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Debugging Using Write Operation
This section discusses VHDL Debugging Using Write Operation, and includes:

• Rules for Debugging

• Using the Endfile Function

Rules for Debugging
Follow these rules for debugging using write operation in VHDL:

• During a std_logic read operation, the only allowed characters are 0 and 1. Other
values such as X and Z are not allowed. XST rejects the design if the file includes
characters other than 0 and 1, except that XST ignores a blank space character.

• Do not use identical names for files placed in different directories.

• Do not use conditional calls to read procedures, as shown in the following coding
example.

if SEL = ’1’ then
read (MY_LINE, A(3 downto 0));

else
read (MY_LINE, A(1 downto 0));

end if;

Using the Endfile Function
XST rejects the design if you use the following description style with the endfile function:

while (not endfile (MY_FILE)) loop
readline (MY_FILE, MY_LINE);
read (MY_LINE, MY_DATA);

end loop;

XST issues the following error message:

Line <MY_LINE> has not enough elements for target <MY_DATA>.

To fix the problem, add exit when endfile (MY_FILE); to the while loop.

while (not endfile (MY_FILE)) loop
readline (MY_FILE, MY_LINE);
exit when endfile (MY_FILE);
read (MY_LINE, MY_DATA);

end loop;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 453

Chapter 14: XST VHDL Language Support

Coding Example
--
-- Print 2 constants to the output file
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_arith.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use STD.TEXTIO.all;
use IEEE.STD_LOGIC_TEXTIO.all;

entity file_support_1 is
generic (data_width: integer:= 4);
port(clk, sel: in std_logic;

din: in std_logic_vector (data_width - 1 downto 0);
dout: out std_logic_vector (data_width - 1 downto 0));

end file_support_1;

architecture Behavioral of file_support_1 is
file results : text is out "test.dat";
constant base_const: std_logic_vector(data_width - 1 downto 0):= conv_std_logic_vector(3,data_width);
constant new_const: std_logic_vector(data_width - 1 downto 0):= base_const + "1000";

begin

process(clk)
variable txtline : LINE;

begin
write(txtline,string’("--------------------"));
writeline(results, txtline);
write(txtline,string’("Base Const: "));
write(txtline,base_const);
writeline(results, txtline);

write(txtline,string’("New Const: "));
write(txtline,new_const);
writeline(results, txtline);
write(txtline,string’("--------------------"));
writeline(results, txtline);

if (clk’event and clk=’1’) then
if (sel = ’1’) then

dout <= new_const;
else

dout <= din;
end if;

end if;
end process;

end Behavioral;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
454 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Data Types
This section discusses VHDL Data Types, and includes:
• Accepted VHDL Data Types
• VHDL Overloaded Data Types
• VHDL Multi-Dimensional Array Types

Accepted VHDL Data Types
XST accepts the following VHDL data types:
• VHDL Enumerated Types
• VHDL User-Defined Enumerated Types
• VHDL Bit Vector Types
• VHDL Integer Types
• VHDL Predefined Types
• VHDL STD_LOGIC_1164 IEEE Types

VHDL Enumerated Types
Type Values Meaning Comment
BIT 0, 1 -- --

BOOLEAN false, true -- --

REAL $-. to $+. -- --

STD_LOGIC U unitialized Not accepted by XST

X unknown Treated as don’t care

0 low Treated identically to L

1 high Treated identically to H

Z high impedance Treated as high impedance

W weak unknown Not accepted by XST

L weak low Treated identically to 0

H weak high Treated identically to 1
- don’t care Treated as don’t care

VHDL User-Defined Enumerated Types
type COLOR is (RED, GREEN, YELLOW) ;

VHDL Bit Vector Types
• BIT_VECTOR
• STD_LOGIC_VECTOR

VHDL Integer Types
INTEGER

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 455

Chapter 14: XST VHDL Language Support

VHDL Predefined Types
• BIT
• BOOLEAN
• BIT_VECTOR
• INTEGER
• REAL

VHDL STD_LOGIC_1164 IEEE Types
The following types are declared in the STD_LOGIC_1164 IEEE package:
• STD_LOGIC
• STD_LOGIC_VECTOR

This package is compiled in the IEEE library. To use one of these types, add the following
two lines to the VHDL specification:

library IEEE; use IEEE.STD_LOGIC_1164.all;

VHDL Overloaded Data Types
The following data types can be overloaded:
• VHDL Overloaded Enumerated Types
• VHDL Overloaded Bit Vector Types
• VHDL Overloaded Integer Types
• VHDL Overloaded STD_LOGIC_1164 IEEE Types
• VHDL Overloaded STD_LOGIC_ARITH IEEE Types\

VHDL Overloaded Enumerated Types
• STD_ULOGIC

Contains the same nine values as the STD_LOGIC type, but does not contain
predefined resolution functions

• X01
Subtype of STD_ULOGIC containing the X, 0 and 1 values

• X01Z
Subtype of STD_ULOGIC containing the X, 0, 1 and Z values

• UX01
Subtype of STD_ULOGIC containing the U, X, 0 and 1 values

• UX01Z
Subtype of STD_ULOGIC containing the U, X, 0, and Z values

VHDL Overloaded Bit Vector Types
• STD_ULOGIC_VECTOR
• UNSIGNED
• SIGNED

Unconstrained types (types whose length is not defined) are not accepted.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
456 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Overloaded Integer Types
• NATURAL
• POSITIVE

Any integer type within a user-defined range. For example:

type MSB is range 8 to 15;

means any integer:

• greater than 7, or
• less than 16

The types NATURAL and POSITIVE are VHDL predefined types.

VHDL Overloaded STD_LOGIC_1164 IEEE Types
The following types are declared in the STD_LOGIC_1164 IEEE package:
• STD_ULOGIC (and subtypes X01, X01Z, UX01, UX01Z)
• STD_LOGIC
• STD_ULOGIC_VECTOR
• STD_LOGIC_VECTOR

This package is compiled in the library IEEE. To use one of these types, add the following
two lines to the VHDL specification:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

VHDL Overloaded STD_LOGIC_ARITH IEEE Types
The types UNSIGNED and SIGNED (defined as an array of STD_LOGIC) are declared
in the STD_LOGIC_ARITH IEEE package.

This package is compiled in the library IEEE. To use these types, add the following two
lines to the VHDL specification:

library IEEE;
use IEEE.STD_LOGIC_ARITH.all;

VHDL Multi-Dimensional Array Types
XST supports multi-dimensional array types of up to three dimensions. BRAMs are not
inferred. Arrays can be:
• Signals
• Constants
• VHDL variables

You can do assignments and arithmetic operations with arrays. You can also pass
multi-dimensional arrays to functions, and use them in instantiations.

Coding Example One
The array must be fully constrained in all dimensions, as shown in the following coding
example.

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB12 is array (11 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB12;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 457

Chapter 14: XST VHDL Language Support

Coding Example Two
You can also declare an array as a matrix, as shown in the following coding example.

subtype TAB13 is array (7 downto 0,4 downto 0) of
STD_LOGIC_VECTOR (8 downto 0);

Consider the following declarations:

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB05 is array (4 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB05;

signal WORD_A : WORD8;
signal TAB_A, TAB_B : TAB05;
signal TAB_C, TAB_D : TAB03;
constant CNST_A : TAB03 := (
("00000000","01000001","01000010","10000011","00001100"),

("00100000","00100001","00101010","10100011","00101100"),

("01000010","01000010","01000100","01000111","01000100"));

The following can now be specified:

• A multi-dimensional array signal or variable

TAB_A <= TAB_B; TAB_C <= TAB_D; TAB_C <= CNST_A;

• An index of one array

TAB_A (5) <= WORD_A; TAB_C (1) <= TAB_A;

• Indexes of the maximum number of dimensions

TAB_A (5) (0) <= ’1’; TAB_C (2) (5) (0) <= ’0’

• A slice of the first array

TAB_A (4 downto 1) <= TAB_B (3 downto 0);

• An index of a higher level array and a slice of a lower level array:

TAB_C (2) (5) (3 downto 0) <= TAB_B (3) (4 downto 1); TAB_D
(0) (4) (2 downto 0) <= CNST_A (5 downto 3)

Coding Example Three
Add the following declaration:

subtype MATRIX15 is array(4 downto 0, 2 downto 0) of
STD_LOGIC_VECTOR (7 downto 0); signal MATRIX_A : MATRIX15;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
458 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

The following can now be specified:

• A multi-dimensional array signal or variable

MATRIXA <= CNST_A;

• An index of one row of the array

MATRIXA (5) <= TAB_A;

• Indexes of the maximum number of dimensions

MATRIXA (5,0) (0) <= ’1’;

Indexes may be variable.

VHDL Record Types
XST supports VHDL record types, as shown in the following Coding Example.

• Record types can contain other record types.

• Constants can be record types.

• Record types cannot contain attributes.

• XST supports aggregate assignments to record signals.

Coding Example
type REC1 is record
field1: std_logic;
field2: std_logic_vector (3 downto 0)

end record;

VHDL Initial Values
This section discusses VHDL Initial Values, and includes:

• Initializing Registers

• VHDL Local Reset/Global Reset

• Default Initial Values on Memory Elements in VHDL

Initializing Registers
In VHDL, you can initialize registers when you declare them.

The value:

• Is a constant

• Cannot depend on earlier initial values

• Cannot be a function or task call

• Can be a parameter value propagated to a register

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 459

Chapter 14: XST VHDL Language Support

Coding Example One
When you give a register an initial value in a declaration, XST sets this value:

• On the output of the register at global reset, or

• At power up

The assigned value:

• Is carried in the NGC file as an INIT attribute on the register

• Is independent of any local reset

signal arb_onebit : std_logic := ’0’;
signal arb_priority : std_logic_vector(3 downto 0) := "1011";

Coding Example Two
You can also assign a set/reset value to a register in behavioral VHDL code. Assign a
value to a register when the register reset line goes to the appropriate value.

process (clk, rst)
begin
if rst=’1’ then
arb_onebit <= ’0’;

end if;
end process;

When you set the initial value of a variable in the behavioral code, it is implemented in
the design as a flip-flop whose output can be controlled by a local reset. As such, it is
carried in the NGC file as an FDP or FDC flip-flop.

VHDL Local Reset/Global Reset
Local reset is independent of global reset. Registers controlled by a local reset may be set
to a different value from registers whose value is only reset at global reset (power up).
In the following coding example, the register arb_onebit is set to 1 at global reset, but
a pulse on the local reset (rst) can change its value to 0.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
460 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

Local Reset/Global Reset VHDL Coding Example
The following coding example sets the initial value on the register output to 1 (one) at
initial power up, but since this is dependent upon a local reset, the value changes to 0
(zero) whenever the local set/reset is activated.

entity top is
Port (
clk, rst : in std_logic;
a_in : in std_logic;
dout : out std_logic);

end top;
architecture Behavioral of top is
signal arb_onebit : std_logic := ’1’;

begin
process (clk, rst)
begin
if rst=’1’ then
arb_onebit <= ’0’;

elsif (clk’event and clk=’1’) then
arb_onebit <= a_in;

end if;
end process;

dout <= arb_onebit;
end Behavioral;

Default Initial Values on Memory Elements in VHDL
Because every memory element in a Xilinx® FPGA device must come up in a known
state, in certain cases, XST does not use IEEE standards for initial values. In the Local
Reset/Global Reset VHDL Coding Example, if signal arb_onebit were not initialized
to 1 (one), XST would assign it a default of 0 (zero) as its initial state. In this case, XST
does not follow the IEEE standard, where U is the default for std_logic. This process of
initialization is the same for both registers and RAMs.

Where possible, XST adheres to the IEEE VHDL standard when initializing signal
values. If no initial values are supplied in the VHDL code, XST uses the default values
(where possible) as shown in the XST column in the following table.

Type IEEE XST
bit ’0’ ’0’

std_logic ’U’ ’0’

bit_vector (3 downto 0) 0000 0000

std_logic_vector (3 downto 0) 0000 0000

integer (unconstrained) integer’left integer’left

integer range 7 downto 0 integer’left = 7 integer’left = 7 (coded as 111)

integer range 0 to 7 integer’left = 0 integer’left = 0 (coded as 000)

Boolean FALSE FALSE (coded as 0)

enum(S0,S1,S2,S3) type’left = S0 type’left = S0 (coded as 000)

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 461

Chapter 14: XST VHDL Language Support

Unconnected output ports default to the values shown in the XST column of VHDL
Initial Values. If the output port has an initial condition, XST ties the unconnected
output port to the explicitly defined initial condition. According to the IEEE VHDL
specification, input ports cannot be left unconnected. As a result, XST issues an error
message if an input port is not connected. Even the open keyword is not sufficient
for an unconnected input port.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
462 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Objects
This section discusses VHDL Objects, and include:

• Signals in VHDL

• Variables in VHDL

• Constants in VHDL

Signals in VHDL
Signals in VHDL can be:

• Declared in an architecture declarative part.

• Used anywhere within the architecture.

• Declared in a block.

• Used within that block.

• Assigned by the assignment operator <=.

Coding Example
signal sig1 : std_logic; sig1 <= ’1’;

Variables in VHDL
Variables in VHDL:

• Are declared in a process or a subprogram.

• Are used within that process or that subprogram.

• Can be assigned by the assignment operator:

:=

Coding Example
variable var1 : std_logic_vector (7 downto 0); var1 := "01010011";

Constants in VHDL
Constants in VHDL:

• Can be declared in any declarative region.

• Can be used within that region.

• Cannot have their values be changed once declared.

Coding Example
signal sig1 : std_logic_vector (5 downto 0);
constant init0 : std_logic_vector (5 downto 0) := "010111";
sig1 <= init0;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 463

Chapter 14: XST VHDL Language Support

VHDL Operators
Supported operators are listed in VHDL Expressions. This section provides coding
examples for each shift operator.

Shift Left Logical VHDL Coding Example
sll (Shift Left Logical) sig1 <= A(4 downto 0) sll 2

logically equivalent to:

sig1 <= A(2 downto 0) & "00";

Shift Right Logical VHDL Coding Example
srl (Shift Right Logical) sig1 <= A(4 downto 0) srl 2

logically equivalent to:

sig1 <= "00" & A(4 downto 2);

Shift Left Arithmetic VHDL Coding Example
sla (Shift Left Arithmetic) sig1 <= A(4 downto 0) sla 2

logically equivalent to:

sig1 <= A(2 downto 0) & A(0) & A(0);

Shift Right Arithmetic VHDL Coding Example
sra (Shift Right Arithmetic) sig1 <= A(4 downto 0) sra 2

logically equivalent to:

sig1 <= <= A(4) & A(4) & A(4 downto 2);

Rotate Left VHDL Coding Example
rol (Rotate Left) sig1 <= A(4 downto 0) rol 2

logically equivalent to:

sig1 <= A(2 downto 0) & A(4 downto 3);

Rotate Right VHDL Coding Example
ror (Rotate Right) A(4 downto 0) ror 2

logically equivalent to:

sig1 <= A(1 downto 0) & A(4 downto 2);

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
464 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Entity and Architecture Descriptions
VHDL entity and architecture descriptions include:
• Circuit Descriptions
• Entity Declarations
• Architecture Declarations
• Component Instantiation
• Recursive Component Instantiation
• Component Configuration
• Generic Parameter Declarations
• Generic and Attribute Conflict

VHDL Circuit Descriptions
A circuit description in VHDL consists of two parts:
• The interface (defining the I/O ports)
• The body

In VHDL:
• The entity corresponds to the interface
• The architecture describes the behavior

VHDL Entity Declarations
The I/O ports of the circuit are declared in the entity. Each port has:
• A name
• A mode

– in
– out
– inout
– buffer

• A type (one of the following ports in the Entity and Architecture Declaration VHDL
Coding Example)
– A
– B
– C
– D
– E

Not more than one-dimensional array types are accepted as ports.

VHDL Architecture Declarations
Internal signals may be declared in the architecture. Each internal signal has:
• A name
• A type

Signal T as shown below in the following coding example

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 465

Chapter 14: XST VHDL Language Support

Coding Example
Library IEEE;
use IEEE.std_logic_1164.all;
entity EXAMPLE is
port (
A,B,C : in std_logic;
D,E : out std_logic);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal T : std_logic;

begin
...
end ARCHI;

VHDL Component Instantiation
Structural descriptions assemble several blocks, and allow the introduction of hierarchy
in a design.

Concept Description
Component Building or basic block

Port Component I/O connector

Signal Corresponds to a wire between components

In VHDL, a component is represented by a design entity. The design entity is a
composite consisting of the concepts shown in the following table.

Concept View Describes
Entity declaration External What can be seen from

the outside, including the
component ports

Architecture body Internal The behavior or the structure
of the component

The connections between components are specified within component instantiation
statements. These statements specify an instance of a component occurring inside an
architecture of another component. Each component instantiation statement is labeled
with an identifier.

Besides naming a component declared in a local component declaration, a component
instantiation statement contains an association list -- the parenthesized list following the
reserved word port map. The association list specifies which actual signals or ports are
associated with which local ports of the component declaration.

XST supports unconstrained vectors in component declarations.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
466 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

Coding Example
The following coding example shows the structural description of a half adder
composed of four nand2 components:

entity NAND2 is
port (
A,B : in BIT;
Y : out BIT);

end NAND2;

architecture ARCHI of NAND2 is
begin
Y <= A nand B;

end ARCHI;

entity HALFADDER is
port (
X,Y : in BIT;
C,S : out BIT);

end HALFADDER;

architecture ARCHI of HALFADDER is
component NAND2
port (
A,B : in BIT;
Y : out BIT);

end component;

for all : NAND2 use entity work.NAND2(ARCHI);
signal S1, S2, S3 : BIT;
begin
NANDA : NAND2 port map (X,Y,S3);
NANDB : NAND2 port map (X,S3,S1);
NANDC : NAND2 port map (S3,Y,S2);
NANDD : NAND2 port map (S1,S2,S);
C <= S3;

end ARCHI;

Synthesized Top Level Netlist Diagram

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 467

Chapter 14: XST VHDL Language Support

VHDL Recursive Component Instantiation
XST supports recursive component instantiation. Direct instantiation is not supported
for recursion. To prevent endless recursive calls, the number of recursions is limited
by default to 64. Use -recursion_iteration_limit to control the number of allowed
recursive calls.

4-Bit Shift Register With Recursive Component Instantiation VHDL Coding
Example
library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity single_stage is
generic (sh_st: integer:=4);
port (
CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);

end entity single_stage;

architecture recursive of single_stage is
component single_stage
generic (sh_st: integer);
port (
CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);

end component;

signal tmp : std_logic;

begin
GEN_FD_LAST: if sh_st=1 generate
inst_fd: FD port map (D=>DI, C=>CLK, Q=>DO);

end generate;
GEN_FD_INTERM: if sh_st /= 1 generate
inst_fd: FD port map (D=>DI, C=>CLK, Q=>tmp);
inst_sstage: single_stage generic map (sh_st => sh_st-1)
port map (DI=>tmp, CLK=>CLK, DO=>DO);

end generate;
end recursive;

VHDL Component Configuration
Associating an entity and architecture pair to a component instance provides the means
of linking components with the appropriate model (entity and architecture pair).

XST supports component configuration in the declarative part of the architecture:

for instantiation_list: component_name use LibName.entity_Name(Architecture_Name);

Coding Example
The following coding example shows how to use a configuration clause for component
instantiation. The example contains a for all statement.

for all : NAND2 use entity work.NAND2(ARCHI);

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
468 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

This statement indicates that all NAND2 components use the entity NAND2 and
Architecture ARCHI.

When the configuration clause is missing for a component instantiation, XST links the
component to the entity with the same name (and same interface) and the selected
architecture to the most recently compiled architecture. If no entity or architecture is
found, a black box is generated during synthesis.

In command line mode, you may also use a dedicated configuration declaration to link
component instantiations in your design to design entities and architectures. In this case,
the value of the mandatory Top Module Name (-top) option in the run command is the
configuration name instead of the top level entity name.

VHDL Generic Parameter Declarations
The Generics (-generics) VHDL command line option allows you to redefine generics
values defined in the top-level design block. This allows you to easily modify the
design configuration without any Hardware Description Language (HDL) source
modifications, such as for IP core generation and testing flows.

Generic parameters may be declared in the entity declaration part. XST supports all
types for generics including, for example:

• Integer

• Boolean

• String

• Real

• std_logic_vector

An example of using generic parameters is setting the width of the design.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 469

Chapter 14: XST VHDL Language Support

Coding Example
By describing circuits with generic ports, the same component can be instantiated
repeatedly with different values of generic ports as shown in the following coding
example.

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity addern is
generic (width : integer := 8);
port (
A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0));

end addern;

architecture bhv of addern is
begin
Y <= A + B;

end bhv;

Library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (
X, Y, Z : in std_logic_vector (12 downto 0);
A, B : in std_logic_vector (4 downto 0);
S :out std_logic_vector (16 downto 0));

end top;

architecture bhv of top is
component addern
generic (width : integer := 8);
port (
A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0));

end component;

for all : addern use entity work.addern(bhv);
signal C1 : std_logic_vector (12 downto 0);
signal C2, C3 : std_logic_vector (16 downto 0);
begin
U1 : addern generic map (n=>13) port map (X,Y,C1);
C2 <= C1 & A;
C3 <= Z & B;
U2 : addern generic map (n=>17) port map (C2,C3,S);

end bhv;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
470 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Generic and Attribute Conflicts
Since generics and attributes can be applied to both instances and components in the
VHDL code, and attributes can also be specified in a constraints file, from time to time,
conflicts may arise. To resolve these conflicts, XST uses the following rules of precedence:
1. Whatever is specified on an instance (lower level) takes precedence over what is

specified on a component (higher level).
2. If a generic and an attribute are specified on either the same instance or the same

component, the generic takes precedence, and XST issues a message warning of the
conflict.

3. An attribute specified in the XST Constraint File (XCF) always takes precedence over
attributes or generics specified in the VHDL code.

When an attribute specified on an instance overrides a generic specified on a component
in XST, it is possible that your simulation tool may nevertheless use the generic. This
may cause the simulation results to not match the synthesis results.

Precedence in VHDL
Generic on an Instance Generic on a Component

Attribute on an Instance Apply Generic (XST issues
warning)

Apply Attribute (possible
simulation mismatch)

Attribute on a Component Apply Generic Apply Generic (XST issues
warning)

Attribute in XCF Apply Attribute XST issues
warning)

Apply Attribute

Security attributes on the block definition always have higher precedence than any
other attribute or generic.

VHDL Combinatorial Circuits
XST supports the following VHDL combinatorial circuits:
• Concurrent Signal Assignments
• Generate Statements
• Combinatorial Processes
• If...Else Statements
• Case Statements
• For...Loop Statements

VHDL Concurrent Signal Assignments
Combinatorial logic in VHDL may be described using concurrent signal assignments.
These can be defined within the body of the architecture. VHDL offers three types of
concurrent signal assignments:
• Simple
• Selected
• Conditional

You can describe as many concurrent statements as needed. The order of concurrent
signal definition in the architecture is irrelevant.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 471

Chapter 14: XST VHDL Language Support

A concurrent assignment consists of two sides:

• Left-hand

• Right-hand

The assignment changes when any signal in the right side changes. In this case, the
result is assigned to the signal on the left side.

Simple Signal Assignment VHDL Coding Example
T <= A and B;

MUX Description Using Selected Signal Assignment VHDL Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity select_bhv is
generic (width: integer := 8);
port (
a, b, c, d : in std_logic_vector (width-1 downto 0);
selector : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0));

end select_bhv;

architecture bhv of select_bhv is
begin
with selector select
T <= a when "00",

b when "01",
c when "10",
d when others;

end bhv;

MUX Description Using Conditional Signal Assignment VHDL Coding
Example
entity when_ent is
generic (width: integer := 8);
port (
a, b, c, d : in std_logic_vector (width-1 downto 0);
selector : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0));

end when_ent;

architecture bhv of when_ent is
begin
T <= a when selector = "00" else

b when selector = "01" else
c when selector = "10" else
d;

end bhv;

VHDL Generate Statements
Repetitive structures are declared with the generate VHDL statement. For this purpose,
for I in 1 to N generatemeans that the bit slice description is repeated N times.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
472 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

8-Bit Adder Described With For...Generate Statement VHDL Coding
Example
The following coding example describes an 8-bit adder by declaring the bit slice
structure.

entity EXAMPLE is
port (
A,B : in BIT_VECTOR (0 to 7);
CIN : in BIT;
SUM : out BIT_VECTOR (0 to 7);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal C : BIT_VECTOR (0 to 8);
begin
C(0) <= CIN;
COUT <= C(8);
LOOP_ADD : for I in 0 to 7 generate
SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));
end generate;

end ARCHI;

N-Bit Adder Described With If...Generate and For… Generate Statement
VHDL Coding Example
XST supports the if condition generate statement for static (non-dynamic) conditions.
The following coding example shows a generic N-bit adder with a width ranging
between 4 and 32.

entity EXAMPLE is
generic (N : INTEGER := 8);
port (
A,B : in BIT_VECTOR (N downto 0);
CIN : in BIT;
SUM : out BIT_VECTOR (N downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal C : BIT_VECTOR (N+1 downto 0);
begin
L1: if (N>=4 and N<=32) generate
C(0) <= CIN;
COUT <= C(N+1);
LOOP_ADD : for I in 0 to N generate
SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end generate;

end ARCHI;

VHDL Combinatorial Processes
A process assigns values to signals differently than when using concurrent signal
assignments. The value assignments are made in a sequential mode. Later assignments
may cancel previous ones. See Assignments in a Process VHDL Coding Example. First the
signal S is assigned to 0, but later on (for (A and B) =1), the value for S is changed to 1.

A process is combinatorial when its inferred hardware does not involve any memory
elements. Said differently, when all assigned signals in a process are always explicitly
assigned in all paths of the Process statements, the process is combinatorial.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 473

Chapter 14: XST VHDL Language Support

A combinatorial process has a sensitivity list appearing within parentheses after the
word process. A process is activated if an event (value change) appears on one of the
sensitivity list signals. For a combinatorial process, this sensitivity list must contain:

• All signals in conditions (for example, if and case)

• All signals on the right-hand side of an assignment

If one or more signals are missing from the sensitivity list, XST issues a warning message
for the missing signals and adds them to the sensitivity list. In this case, the result of the
synthesis may be different from the initial design specification.

A process may contain local variables. The variables are handled in a similar manner
as signals (but are not, of course, outputs to the design).

In Combinatorial Process VHDL Coding Example One, a variable named AUX is declared in
the declarative part of the process, and is assigned to a value (with :=) in the statement
part of the process.

In combinatorial processes, if a signal is not explicitly assigned in all branches of if or
case statements, XST generates a latch to hold the last value. To avoid latch creation,
ensure that all assigned signals in a combinatorial process are always explicitly assigned
in all paths of the Process statements.

Different statements can be used in a process:

• Variable and signal assignment

• If statement

• Case statement

• For...Loop statement

• Function and procedure call

Assignments in a Process VHDL Coding Example
entity EXAMPLE is
port (
A, B : in BIT;
S : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (A, B)
begin
S <= ’0’ ;
if ((A and B) = ’1’) then
S <= ’1’ ;

end if;
end process;

end ARCHI;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
474 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

Coding Example One
library ASYL;
use ASYL.ARITH.all;

entity ADDSUB is
port (
A,B : in BIT_VECTOR (3 downto 0);
ADD_SUB : in BIT;
S : out BIT_VECTOR (3 downto 0));

end ADDSUB;

architecture ARCHI of ADDSUB is
begin
process (A, B, ADD_SUB)
variable AUX : BIT_VECTOR (3 downto 0);

begin
if ADD_SUB = ’1’ then
AUX := A + B ;

else
AUX := A - B ;

end if;
S <= AUX;

end process;
end ARCHI;

Coding Example Two
entity EXAMPLE is
port (
A, B : in BIT;
S : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (A,B)
variable X, Y : BIT;

begin
X := A and B;
Y := B and A;
if X = Y then
S <= ’1’ ;

end if;
end process;

end ARCHI;

VHDL If...Else Statements
If...else statements:

• Use true and false conditions to execute statements.

• May be nested.

• May be executed in a block of multiple statements using begin and end keywords.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 475

Chapter 14: XST VHDL Language Support

Expression Evaluates To Statement Executed
true First statement

false else statement
x else statement
z else statement

Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (
a, b, c, d : in std_logic_vector (7 downto 0);
sel1, sel2 : in std_logic;
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is
begin
process (a, b, c, d, sel1, sel2)
begin
if (sel1 = ’1’) then
if (sel2 = ’1’) then
outmux <= a;

else
outmux <= b;

end if;
else
if (sel2 = ’1’) then
outmux <= c;

else
outmux <= d;

end if;
end if;

end process;
end behavior;

VHDL Case Statements
Case statements perform a comparison to an expression to evaluate one of a number
of parallel branches. The case statement evaluates the branches in the order they are
written. The first branch that evaluates to true is executed. If none of the branches
match, the default branch is executed.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
476 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Case Statement Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (
a, b, c, d : in std_logic_vector (7 downto 0);
sel : in std_logic_vector (1 downto 0);
outmux : out std_logic_vector (7 downto 0));

end mux4;
architecture behavior of mux4 is
begin
process (a, b, c, d, sel)
begin
case sel is
when "00" => outmux <= a;
when "01" => outmux <= b;
when "10" => outmux <= c;
when others => outmux <= d; -- case statement

-- must be complete
end case;

end process;
end behavior;

VHDL For...Loop Statements
XST supports the for statement for:

• Constant bounds

• Stop test condition using any of the following operators:

– <

– <=

– >

– >=

• Next step computation falling within one of the following specifications:

– var = var + step

– var = var - step

where

♦ var is the loop variable

♦ step is a constant value

• Next and exit statements

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 477

Chapter 14: XST VHDL Language Support

VHDL For...Loop Statement Coding Example
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity countzeros is
port (
a : in std_logic_vector (7 downto 0);
Count : out std_logic_vector (2 downto 0));

end mux4;

architecture behavior of mux4 is
signal Count_Aux: std_logic_vector (2 downto 0);
begin
process (a)
begin
Count_Aux <= "000";
for i in a’range loop
if (a[i] = ’0’) then
Count_Aux <= Count_Aux + 1; -- operator "+" defined

-- in std_logic_unsigned
end if;

end loop;
Count <= Count_Aux;

end process;
end behavior;

VHDL Sequential Circuits
Sequential circuits can be described using sequential processes. XST allows:

• VHDL Sequential Process With a Sensitivity List

• VHDL Sequential Process Without a Sensitivity List

VHDL Sequential Process With a Sensitivity List
A process is sequential when it is not a combinatorial process. In other words, a process
is sequential when some assigned signals are not explicitly assigned in all paths of
the statements. In this case, the hardware generated has an internal state or memory
(flip-flops or latches).

The following coding example provides a template for describing sequential circuits.

For more information, see:

XST HDL Coding Techniques

This topic describes macro inference (for example, registers and counters).

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
478 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

Coding Example
Declare asynchronous signals in the sensitivity list. Otherwise, XST issues a warning
and adds them to the sensitivity list. In this case, the behavior of the synthesis result
may be different from the initial specification.

process (CLK, RST) ...
begin
if RST = <’0’ | ’1’> then
-- an asynchronous part may appear here
-- optional part
.......

elsif <CLK’EVENT | not CLK’STABLE>
and CLK = <’0’ | ’1’> then
-- synchronous part
-- sequential statements may appear here

end if;
end process;

VHDL Sequential Process Without a Sensitivity List
Sequential processes without a sensitivity list must contain aWait statement. TheWait
statement must be the first statement of the process. The condition in theWait statement
must be a condition on the clock signal. SeveralWait statements in the same process are
accepted, but a set of specific conditions must be respected.

For more information, see:

VHDL Multiple Wait Statements Descriptions

An asynchronous part cannot be specified within processes without a sensitivity list.

VHDL Sequential Process Without a Sensitivity List Coding Example
The following VHDL coding example shows the skeleton of the process described in this
section. The clock condition may be a falling or a rising edge.

process ...
begin
wait until <CLK’EVENT | not CLK’ STABLE> and CLK = <’0’ | ’1’>;
... -- a synchronous part may be specified here.

end process;

XST does not support clock and clock enable descriptions within the sameWait
statement. Instead, code these descriptions as shown in Clock and Clock Enable (Supported)
VHDL Coding Example.

XST does not support Wait statements for latch descriptions.

Clock and Clock Enable (Not Supported) VHDL Coding Example
Caution! This coding style is NOT supported.

wait until CLOCK’event and CLOCK = ’0’ and ENABLE = ’1’ ;

Clock and Clock Enable (Supported) VHDL Coding Example
"8 Bit Counter Description Using a Process with a Sensitivity List" if ENABLE = ’1’ then ...

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 479

Chapter 14: XST VHDL Language Support

Register and Counter Descriptions VHDL Coding Examples
Coding examples can be downloaded in text format from
ftp://ftp.xilinx.com/pub/documentation/misc/examples_v9.zip

8-Bit Register Description Using a Process With a Sensitivity List VHDL
Coding Example
entity EXAMPLE is
port (
DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (CLK)
begin
if CLK’EVENT and CLK = ’1’ then
DO <= DI ;

end if;
end process;

end ARCHI;

8 Bit Register Description Using a Process Without a Sensitivity List
Containing a Wait Statement VHDL Coding Example
entity EXAMPLE is
port (
DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process begin
wait until CLK’EVENT and CLK = ’1’;
DO <= DI;

end process;
end ARCHI;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
480 www.xilinx.com UG627 (v 12.4) December 14, 2010

ftp://ftp.xilinx.com/pub/documentation/misc/examples_v9.zip

Chapter 14: XST VHDL Language Support

8-Bit Register With Clock Signal and Asynchronous Reset Signal VHDL
Coding Example
entity EXAMPLE is
port (
DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
RST : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (CLK, RST)
begin
if RST = ’1’ then
DO <= "00000000";

elsif CLK’EVENT and CLK = ’1’ then
DO <= DI ;

end if;
end process;

end ARCHI;

8-Bit Counter Description Using a Process With a Sensitivity List VHDL
Coding Example
library ASYL;
use ASYL.PKG_ARITH.all;

entity EXAMPLE is
port (
CLK : in BIT;
RST : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (CLK, RST)
variable COUNT : BIT_VECTOR (7 downto 0);

begin
if RST = ’1’ then
COUNT := "00000000";

elsif CLK’EVENT and CLK = ’1’ then
COUNT := COUNT + "00000001";

end if;
DO <= COUNT;

end process;
end ARCHI;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 481

Chapter 14: XST VHDL Language Support

VHDL Multiple Wait Statements Descriptions
Sequential circuits can be described in VHDL with multiplewait statements in a process.
Follow these rules when using multiple wait statements:

• The process contains only one loop statement.

• The first statement in the loop is a wait statement.

• After each wait statement, a next or exit statement is defined.

• The condition in the wait statements is the same for each wait statement.

• This condition use only one signal — the clock signal.

• This condition has the following form:

"wait [on clock_signal] until [(clock_signal’EVENT | not clock_signal’STABLE) and]
clock_signal = {’0’ | ’1’};"

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
482 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

Coding Example
The following VHDL coding example uses multiple wait statements. This example
describes a sequential circuit performing four different operations in sequence.
The design cycle is delimited by two successive rising edges of the clock signal. A
synchronous reset is defined providing a way to restart the sequence of operations at
the beginning. The sequence of operations consists of assigning each of the following
four inputs to the output RESULT:

• DATA1

• DATA2

• DATA3

• DATA4

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity EXAMPLE is
port (
DATA1, DATA2, DATA3, DATA4 : in STD_LOGIC_VECTOR (3 downto 0);
RESULT : out STD_LOGIC_VECTOR (3 downto 0);
CLK : in STD_LOGIC;
RST : in STD_LOGIC);

end EXAMPLE;

architecture ARCH of EXAMPLE is
begin
process begin
SEQ_LOOP : loop
wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA1;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA2;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA3;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA4;

end loop;
end process;

end ARCH;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 483

Chapter 14: XST VHDL Language Support

VHDL Functions and Procedures
The declaration of a function or a procedure in VHDL provides a mechanism for
handling blocks used multiple times in a design. Functions and procedures can be
declared in the declarative part of an entity, in an architecture or in packages. The
heading part contains:
• Input parameters for functions and input
• Output and inout parameters for procedures.

These parameters can be unconstrained. They are not constrained to a given bound. The
content is similar to the combinatorial process content.

Resolution functions are not supported except the one defined in the IEEE std_logic_1164
package.

Function Declaration and Function Call VHDL Coding Example
The following VHDL coding example shows a function declared within a package. The
ADD function declared here is a single bit adder. This function is called four times with
the proper parameters in the architecture to create a 4-bit adder. The same example using
a procedure is shown in Procedure Declaration and Procedure Call VHDL Coding Example.

package PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR;

end PKG;

package body PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR is
variable S, COUT : BIT;
variable RESULT : BIT_VECTOR (1 downto 0);

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
RESULT := COUT & S;
return RESULT;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLE is
port (
A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);
begin
S0 <= ADD (A(0), B(0), CIN);
S1 <= ADD (A(1), B(1), S0(1));
S2 <= ADD (A(2), B(2), S1(1));
S3 <= ADD (A(3), B(3), S2(1));
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end ARCHI;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
484 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

Procedure Declaration and Procedure Call VHDL Coding Example
package PKG is
procedure ADD (
A,B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0));

end PKG;

package body PKG is
procedure ADD (
A,B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0)
) is
variable S, COUT : BIT;

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
C := COUT & S;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLE is
port (
A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (A,B,CIN)
variable S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);

begin
ADD (A(0), B(0), CIN, S0);
ADD (A(1), B(1), S0(1), S1);
ADD (A(2), B(2), S1(1), S2);
ADD (A(3), B(3), S2(1), S3);
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end process;
end ARCHI;

Recursive Function VHDL Coding Example
XST supports recursive functions. The following coding example represents n! function:

function my_func(x : integer) return integer is
begin
if x = 1 then
return x;

else
return (x*my_func(x-1));

end if;
end function my_func;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 485

Chapter 14: XST VHDL Language Support

VHDL Assert Statements
XST supports VHDL Assert statements. Assert statements enable you to detect
undesirable conditions in VHDL designs, such as bad values for:

• conditions:

– generics

– constants

– generate

• parameters in called functions

For any failed condition in an Assert statement, XST (depending on the severity level)
either:

• Issues a warning message, or

• Rejects the design and issues an error message.

XST supports the Assert statement only with static condition.

Coding Example
The following coding example contains a block SINGLE_SRL which describes a shift
register. The size of the shift register depends on the SRL_WIDTH generic value. The
Assert statement ensures that the implementation of a single shift register does not
exceed the size of a single Shift Register LUT (SRL).

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
486 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

Since the size of the SRL is 16 bit, and XST implements the last stage of the shift register
using a flip-flop in a slice, then the maximum size of the shift register cannot exceed 17
bits. The SINGLE_SRL block is instantiated twice in the entity named TOP:

• first with SRL_WIDTH equal to 13

• second with SRL_WIDTH equal to 18
library ieee;
use ieee.std_logic_1164.all;

entity SINGLE_SRL is
generic (SRL_WIDTH : integer := 16);
port (
clk : in std_logic;
inp : in std_logic;
outp : out std_logic);

end SINGLE_SRL;

architecture beh of SINGLE_SRL is
signal shift_reg : std_logic_vector (SRL_WIDTH-1 downto 0);

begin

assert SRL_WIDTH <= 17
report "The size of Shift Register exceeds the size of a single SRL"
severity FAILURE;

process (clk)
begin
if (clk’event and clk = ’1’) then
shift_reg <= shift_reg (SRL_WIDTH-1 downto 1) & inp;

end if;
end process;

outp <= shift_reg(SRL_WIDTH-1);
end beh;

library ieee;
use ieee.std_logic_1164.all;

entity TOP is
port (
clk : in std_logic;
inp1, inp2 : in std_logic;
outp1, outp2 : out std_logic);

end TOP;

architecture beh of TOP is
component SINGLE_SRL is
generic (SRL_WIDTH : integer := 16);
port(
clk : in std_logic;
inp : in std_logic;
outp : out std_logic);

end component;
begin
inst1: SINGLE_SRL generic map (SRL_WIDTH => 13)
port map(
clk => clk,
inp => inp1,
outp => outp1);

inst2: SINGLE_SRL generic map (SRL_WIDTH => 18)
port map(
clk => clk,
inp => inp2,
outp => outp2);

end beh;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 487

Chapter 14: XST VHDL Language Support

Error Message
If you run the coding example above, XST issues the following error message:

...
==
* HDL Analysis *
==
Analyzing Entity <top> (Architecture <beh>).
Entity <top> analyzed. Unit <top> generated.

Analyzing generic Entity <single_srl> (Architecture <beh>).
SRL_WIDTH = 13

Entity <single_srl> analyzed. Unit <single_srl> generated.

Analyzing generic Entity <single_srl> (Architecture <beh>).
SRL_WIDTH = 18

ERROR:Xst - assert_1.vhd line 15: FAILURE:
The size of Shift Register exceeds the size of a single SRL
...

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
488 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Models Defined Using Packages
This section discusses VHDL Models Defined Using Packages, and includes:

• About VHDL Models Defined Using Packages

• Using Standard Packages to Define VHDL Models

• Using IEEE Packages to Define VHDL Models

• Using Synopsys Packages to Define VHDL Models

About VHDL Models Defined Using Packages
VHDL models may be defined using packages. Packages contain:

• Type and subtype declarations

• Constant definitions

• Function and procedure definitions

• Component declarations

Using packages to define VHDL models provides the ability to change parameters and
constants of the design, such as constant values and function definitions.

Packages may contain two declarative parts:

• Body declaration

• Package declaration

The body declaration includes the description of function bodies declared in the package
declaration.

library lib_pack;
-- lib_pack is the name of the library specified
-- where the package has been compiled (work by default)
use lib_pack.pack_name.all;
-- pack_name is the name of the defined package.

XST also supports predefined packages. These packages are pre-compiled and can be
included in VHDL designs. These packages are intended for use during synthesis, but
may also be used for simulation.

Using Standard Packages to Define VHDL Models
The Standard package:

• Is included by default

• Contains basic types:

– bit

– bit_vector

– integer

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 489

Chapter 14: XST VHDL Language Support

VHDL Models Defined Using IEEE Packages
XST supports the following IEEE packages:

• std_logic_1164

Supports the following types:

– std_logic

– std_ulogic

– std_logic_vector

– std_ulogic_vector

XST also supports conversion functions based on these types.

• numeric_bit

Supports the following types based on type bit:

– Unsigned vectors

– Signed vectors

XST also supports:

♦ All overloaded arithmetic operators on these types

♦ Conversion and extended functions for these types

• numeric_std

Supports the following types based on type std_logic:

– Unsigned vectors

– Signed vectors

This package is equivalent to std_logic_arith.

• math_real

Supports the following:

– Real number constants as shown in VHDL Real Number Constants

– Real number functions as shown in VHDL Real Number Constants

– The procedure uniform, which generates successive values between 0.0 and 1.0

VHDL Real Number Constants
Constant Value Constant Value

math_e e math_log_of_2 ln2

math_1_over_e 1/e math_log_of_10 ln10

math_pi math_log2_of_e log2e

math_2_pi math_log10_of_e log10e

math_1_over_pi math_sqrt_2

math_pi_over_2 math_1_oversqrt_2

math_pi_over_3 math_sqrt_pi

math_pi_over_4 math_deg_to_rad

math_3_pi_over_2 math_rad_to_deg

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
490 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Real Number Functions
ceil(x) realmax(x,y) exp(x) cos(x) cosh(x)

floor(x) realmin(x,y) log(x) tan(x) tanh(x)

round(x) sqrt(x) log2(x) arcsin(x) arcsinh(x)

trunc(x) cbrt(x) log10(x) arctan(x) arccosh(x)

sign(x) "**"(n,y) log(x,y) arctan(y,x) arctanh(x)

"mod"(x,y) "**"(x,y) sin(x) sinh(x)

Functions and procedures in the math_real packages, as well as the real type, are for
calculations only. They are not supported for synthesis in XST.

Coding Example
library ieee;
use IEEE.std_logic_signed.all;
signal a, b, c : std_logic_vector (5 downto 0);
c <= a + b;
-- this operator "+" is defined in package std_logic_signed.
-- Operands are converted to signed vectors, and function "+"
-- defined in package std_logic_arith is called with signed
-- operands.

Using Synopsys Packages to Define VHDL Models
The following Synopsys packages are supported in the IEEE library:

• std_logic_arith

Supports types unsigned, signed vectors, and all overloaded arithmetic operators on
these types. It also defines conversion and extended functions for these types.

• std_logic_unsigned

Defines arithmetic operators on std_ulogic_vector and considers them as unsigned
operators.

• std_logic_signed

Defines arithmetic operators on std_logic_vector and considers them as signed
operators.

• std_logic_misc

Defines supplemental types, subtypes, constants, and functions for the
std_logic_1164 package, such as:

– and_reduce

– or_reduce

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 491

Chapter 14: XST VHDL Language Support

VHDL Constructs Supported in XST
XST supports the following VHDL Constructs:
• Design Entities and Configurations
• Expressions
• Statements

VHDL Design Entities and Configurations
Note XST does not allow underscores as the first character of signal names (for
example, _DATA_1).

XST supports VHDL design entities and configurations except as shown in the following
sections:
• VHDL Entity Headers
• VHDL Packages
• VHDL Physical Types
• VHDL Modes
• VHDL Declarations
• VHDL Objects
• VHDL Specifications

VHDL Entity Headers
• Generics

Supported
• Ports

Supported
• Entity Statement Part

Partial support. Allowed statements include:
– Attribute declarations
– Attribute specifications
– Constant declarations

VHDL Packages
STANDARD
Type TIME is not supported

VHDL Physical Types
• TIME

Ignored
• REAL

Supported, but only in functions for constant calculations

VHDL Modes
Linkage
Unsupported

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
492 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Declarations
Type
Supported for:
– enumerated types
– types with positive range having constant bounds
– bit vector types
– multi-dimensional arrays

VHDL Objects
• Constant Declaration

Supported except for deferred constant
• Signal Declaration

Supported except for register and bus type signals
• Attribute Declaration

Supported for some attributes, otherwise skipped
For more information, see:
XST Design Constraints

VHDL Specifications
• Attribute

Supported for some predefined attributes only:
– HIGH
– LOW
– LEFT
– RIGHT
– RANGE
– REVERSE_RANGE
– LENGTH
– POS
– ASCENDING
– EVENT
– LAST_VALUE

• Configuration
Supported only with the all clause for instances list. If no clause is added, XST looks
for the entity or architecture compiled in the default library

• Disconnection
Unsupported

VHDL Expressions
XST supports the following expressions:
• VHDL Operators
• VHDL Operands

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 493

Chapter 14: XST VHDL Language Support

VHDL Operators
Operator Supported/Unsupported
Logical Operators:

and, or, nand, nor, xor, xnor, not

Supported

Relational Operators:

=, /=, <, <=, >, >=

Supported

& (concatenation) Supported

Adding Operators: +, - Supported

* Supported

/,rem Supported if the right operand is a constant power of 2

mod Supported if the right operand is a constant power of 2

Shift Operators:

sll, srl, sla, sra, rol, ror

Supported

abs Supported

** Only supported if the left operand is 2

Sign: +, - Supported

VHDL Operands
Operand Supported/Unsupported
Abstract Literals Only integer literals are supported

Physical Literals Ignored

Enumeration Literals Supported

String Literals Supported

Bit String Literals Supported

Record Aggregates Supported

Array Aggregates Supported

Function Call Supported

Qualified Expressions Supported for accepted predefined attributes

Types Conversions Supported

Allocators Unsupported

Static Expressions Supported

VHDL Statements
XST supports all VHDL statements except as shown in the following sections:

• VHDL Wait Statements

• VHDL Loop Statements

• VHDL Concurrent Statements

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
494 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 14: XST VHDL Language Support

VHDL Wait Statements
Wait Statement Supported/Unsupported
Wait on sensitivity_list until Boolean_expression.

For more information, see:

VHDL Sequential Circuits

Supported with one signal in the sensitivity list and in the
Boolean expression. In case of multiple Wait statements,
the sensitivity list and the Boolean expression must be the
same for each Wait statement.

Note XST does not support Wait statements for latch
descriptions.

Wait for time_expression ...

For more information, see:

VHDL Sequential Circuits

Unsupported

Assertion Statement Supported (only for static conditions)

Signal Assignment

Statement

Supported (delay is ignored)

VHDL Loop Statements
Loop Statement Supported/Unsupported
for... loop... end loop Supported for constant bounds only. Disable statements

are not supported.

loop ... end loop Only supported in the particular case of multiple Wait
statements

VHDL Concurrent Statements
Concurrent Statement Supported/Unsupported
Concurrent Signal

Assignment Statement

Supported (no after clause, no transport or guarded options,
no waveforms) UNAFFECTED is supported.

For ... Generate Statement supported for constant bounds only

If ... Generate Statement supported for static condition only

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 495

Chapter 14: XST VHDL Language Support

VHDL Reserved Words
abs access after alias

all and architecture array

assert attribute begin block

body buffer bus case

component configuration constant disconnect

downto else elsif end

entity exit file for

function generate generic group

guarded if impure in

inertial inout is label

library linkage literal loop
map mod nand new

next nor not null

of on open or

others out package port

postponed procedure process pure

range record register reject
rem report return rol
ror select severity signal

shared sla sll sra

srl subtype then to

transport type unaffected units

until use variable wait

when while with xnor

xor

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
496 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15

XST Verilog Language Support
This chapter discusses XST Verilog Language Support, and includes:
• About XST Verilog Language Support
• Behavioral Verilog
• Variable Part Selects
• Structural Verilog Features
• Verilog Parameters
• Verilog Parameter and Attribute Conflicts
• Verilog Limitations in XST
• Verilog Attributes and Meta Comments
• Verilog Constructs Supported in XST
• Verilog System Tasks and Functions Supported in XST
• Verilog Primitives
• Verilog Reserved Keywords
• Verilog-2001 Support in XST

About XST Verilog Language Support
Complex circuits are commonly designed using a top down methodology. Various
specification levels are required at each stage of the design process. For example, at the
architectural level, a specification may correspond to a block diagram or an Algorithmic
State Machine (ASM) chart. A block or ASM stage corresponds to a register transfer
block where the connections are N-bit wires, such as:
• Register
• Adder
• Counter
• Multiplexer
• Glue logic
• Finite State Machine (FSM)

A Hardware Description Language (HDL) such as Verilog allows the expression of
notations such as ASM charts and circuit diagrams in a computer language.

Verilog provides both behavioral and structural language structures. These structures
allow expressing design objects at high and low levels of abstraction. Designing
hardware with a language such as Verilog allows using software concepts such as
parallel processing and object-oriented programming. Verilog has a syntax similar to C
and Pascal. XST supports it as IEEE 1364.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 497

Chapter 15: XST Verilog Language Support

The Verilog support in XST provides an efficient way to describe both the global circuit
and each block according to the most efficient style. Synthesis is then performed with
the best synthesis flow for each block. Synthesis in this context is the compilation of
high-level behavioral and structural Verilog Hardware Description Language (HDL)
statements into a flattened gate-level netlist, which can then be used to custom program
a programmable logic device such as a Virtex® device. Different synthesis methods are
used for arithmetic blocks, glue logic, and Finite State Machine (FSM) components.

The XST User Guide assumes that you are familiar with basic Verilog concepts.

For more information, see:

• Verilog design constraints and options
XST Design Constraints

• Verilog attribute syntax
Verilog-2001 Attributes

• Setting Verilog options in the Process window of ISE® Design Suite
XST General Constraints

• General Verilog information
IEEE Verilog HDL Reference Manual

Behavioral Verilog
For information about Behavioral Verilog, see:

XST Behavioral Verilog Language Support

Variable Part Selects
Verilog 2001 adds the capability of using variables to select a group of bits from a vector.
A variable part select is defined by the starting point of its range and the width of the
vector, instead of being bounded by two explicit values. The starting point of the part
select can vary, but the width of the part select remains constant.

Variable Part Select Symbols
Symbol Meaning
+ (plus) The part select increases from the starting point

- (minus) The part select decreases from the starting point

Coding Example
reg [3:0] data;

reg [3:0] select; // a value from 0 to 7
wire [7:0] byte = data[select +: 8];

Structural Verilog Features
This section discusses Structural Verilog Features, and includes:
• About Structural Verilog Features
• Instantiating Pre-Defined Primitives

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
498 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

About Structural Verilog Features
Structural Verilog descriptions assemble several blocks of code and allow the
introduction of hierarchy in a design. The basic concepts of hardware structure are:
• Component

The building or basic block
• Port

A component I/O connector
• Signal

Corresponds to a wire between components

In Verilog, a component is represented by a design module. The module declaration
provides the external view of the component. It describes what can be seen from the
outside, including the component ports. The module body provides an internal view. It
describes the behavior or the structure of the component.

The connections between components are specified within component instantiation
statements. These statements specify an instance of a component occurring within
another component or the circuit. Each component instantiation statement is labeled
with an identifier.

Besides naming a component declared in a local component declaration, a component
instantiation statement contains an association list (the parenthesized list) that specifies
which actual signals or ports are associated with which local ports of the component
declaration.

Verilog provides a large set of built-in logic gates which can be instantiated to build
larger logic circuits. The set of logical functions described by the built-in gates includes:
• AND
• OR
• XOR
• NAND
• NOR
• NOT

Building a Basic XOR Function Structural Verilog Coding Example
Following is an example of building a basic XOR function of two single bit inputs
a and b:

module build_xor (a, b, c);
input a, b;
output c;
wire c, a_not, b_not;
not a_inv (a_not, a);
not b_inv (b_not, b);
and a1 (x, a_not, b);
and a2 (y, b_not, a);
or out (c, x, y);

endmodule

Each instance of the built-in modules has a unique instantiation name such as:
• a_inv
• b_inv
• out

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 499

Chapter 15: XST Verilog Language Support

Structural Description of a Half Adder Structural Verilog Coding Example
The following coding example shows the structural description of a half adder
composed of four, 2 input nand modules:

module halfadd (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;
nand NANDA (S3, X, Y);
nand NANDB (S1, X, S3);
nand NANDC (S2, S3, Y);
nand NANDD (S, S1, S2);
assign C = S3;

endmodule

Synthesized Top Level Netlist Diagram

Instantiating Pre-Defined Primitives
The structural features of Verilog also allow you to design circuits by instantiating
pre-defined primitives such as:

• gates

• registers

• Xilinx® specific primitives such as:

– CLKDLL

– BUFG

These primitives are other than those included in Verilog. These pre-defined primitives
are supplied with the XST Verilog libraries (unisim_comp.v).

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
500 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

Structural Instantiation of REGISTER and BUFG Structural Verilog Coding
Example
module foo (sysclk, in, reset, out);
input sysclk, in, reset;
output out;
reg out;
wire sysclk_out;
FDC register (out, sysclk_out, reset, in);
//position based referencing
BUFG clk (.O(sysclk_out),.I(sysclk));
//name based referencing
...
endmodule

The unisim_comp.v library file supplied with XST, includes the definitions for:

• FDC

• BUFG

(* BOX_TYPE="PRIMITIVE" *) // Verilog-2001
module FDC (Q, C, CLR, D);
parameter INIT = 1’b0;
output Q;
input C;
input CLR;
input D;
endmodule

(* BOX_TYPE="PRIMITIVE" *) // Verilog-2001
module BUFG (O, I);
output O;
input I;
endmodule

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 501

Chapter 15: XST Verilog Language Support

Verilog Parameters
Verilog modules allow you to define constants known as parameters. Parameters can be
passed to module instances to define circuits of arbitrary widths. Parameters form the
basis of creating and using parameterized blocks in a design to achieve hierarchy.

Coding Example
The following Verilog coding example shows the use of parameters. Null string
parameters are not supported.

module lpm_reg (out, in, en, reset, clk);
parameter SIZE = 1;
input in, en, reset, clk;
output out;
wire [SIZE-1 : 0] in;
reg [SIZE-1 : 0] out;

always @(posedge clk or negedge reset)
begin
if (!reset)
out <= 1’b0;

else
if (en)
out <= in;

else
out <= out; //redundant assignment

end
endmodule
module top (); //portlist left blank intentionally
...
wire [7:0] sys_in, sys_out;
wire sys_en, sys_reset, sysclk;
lpm_reg #8 buf_373 (sys_out, sys_in, sys_en, sys_reset, sysclk);
...

endmodule

Instantiation of the module lpm_reg with a instantiation width of 8 causes the instance
buf_373 to be 8 bits wide.

The Generics (-generics) command line option allows you to redefine parameters
(Verilog) values defined in the top-level design block. This allows you to easily modify
the design configuration without any Hardware Description Language (HDL) source
modifications, such as for IP core generation and testing flows.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
502 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

Verilog Parameter and Attribute Conflicts
This section discusses Verilog Parameter and Attribute Conflicts, and includes:

• Resolving Verilog Parameter and Attribute Conflicts

• Verilog Parameter and Attribute Conflicts Precedence

Resolving Verilog Parameter and Attribute Conflicts
Since parameters and attributes can be applied to both instances and modules in Verilog
code, and attributes can also be specified in a constraints file, conflicts will occasionally
arise.

XST uses the following rules of precedence to resolve these conflicts:

1. Specifications on an instance (lower level) takes precedence over specifications on a
module (higher level).

2. If a parameter and an attribute are specified on either the same instance or the same
module, the parameter takes precedence. XST issues a warning message.

3. An attribute specified in the XST Constraint File (XCF) takes precedence over
attributes or parameters specified in the Verilog code.

When an attribute specified on an instance overrides a parameter specified on a module
in XST, the simulation tool may use the parameter anyway. If that happens, the
simulation results may not match the synthesis results.

Verilog Parameter and Attribute Conflicts Precedence
Parameter on an Instance Parameter on a Module

Attribute on an Instance Apply Parameter (XST issues
warning)

Apply Attribute (possible
simulation mismatch)

Attribute on a Module Apply Parameter Apply Parameter (XST issues
warning)

Attribute in XCF Apply Attribute (XST issues
warning)

Apply Attribute

Security attributes on the module definition always have higher precedence than any
other attribute or parameter.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 503

Chapter 15: XST Verilog Language Support

Verilog Limitations in XST
This section describes Verilog Limitations in XST, and includes:
• Verilog Case Sensitivity
• Verilog Blocking and Nonblocking Assignments
• Verilog Integer Handling

Verilog Case Sensitivity
Since Verilog is case sensitive, module and instance names can be made unique by
changing capitalization. However, for compatibility with file names, mixed language
support, and other tools, Xilinx® recommends that you do not rely on capitalization
only to make instance names unique.

XST does not allow module names to differ by capitalization only. It renames instances
and signal names to ensure that lack of case sensitivity support in other tools in your
flow does not adversely impact your design.

XST Support for Verilog Case Sensitivity
XST supports Verilog case sensitivity as follows:
• Designs can use case equivalent names for I/O ports, nets, regs and memories.
• Equivalent names are renamed using a postfix (rnm<Index>).
• A rename construct is generated in the NGC file.
• Designs can use Verilog identifiers that differ in case only. XST renames them using

a postfix as with equivalent names.

For instance:

module upperlower4 (input1, INPUT1, output1, output2);
input input1;
input INPUT1;

For this example, INPUT1 is renamed to INPUT1_rnm0.

Verilog Restrictions Within XST
XST rejects code using equivalent names (named blocks, tasks, and functions) such as
the following:

...
always @(clk)
begin: fir_main5
reg [4:0] fir_main5_w1;
reg [4:0] fir_main5_W1;

XST issues the following error message:

ERROR:Xst:863 - "design.v", line 6: Name conflict
(<fir_main5/fir_main5_w1> and <fir_main5/fir_main5_W1>)

Code using case equivalent module names such as the following is rejected:

module UPPERLOWER10 (...);
...
module upperlower10 (...);
...

XST issues the following error message:

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
504 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

ERROR:Xst:909 - Module name conflict (UPPERLOWER10 and
upperlower10)

Verilog Blocking and Nonblocking Assignments
This section gives two rejected coding examples for blocking and nonblocking
assignments.

Rejected Coding Example One
XST rejects Verilog designs if a given signal is assigned through both blocking and
nonblocking assignments as shown in the following coding example.

always @(in1)
begin
if (in2)
out1 = in1;

else
out1 <= in2;

end

Rejected Coding Example Two
The following coding example is rejected even if there is no real mixing of blocking
and nonblocking assignments.

if (in2)
begin
out1[0] = 1’b0;
out1[1] <= in1;

end
else
begin
out1[0] = in2;
out1[1] <= 1’b1;

end

If a variable is assigned in both a blocking and nonblocking assignment, XST issues the
following error message:

ERROR:Xst:880 - "design.v", line n:
Cannot mix blocking and non-blocking assignments on signal <out1>.

There are also restrictions when mixing blocking and nonblocking assignments on
bits and slices.

Errors are checked at the signal level, not at the bit level.

If there is more than one blocking or nonblocking error, only the first is reported.

In some cases, the line number for the error might be incorrect (as there might be
multiple lines where the signal has been assigned).

Verilog Integer Handling
XST handles Verilog integers differently from other synthesis tools in several instances.
They must be coded in a particular way. Unsized integers in Verilog case item
expressions and concatenations may cause unpredictable results

Unsized Integers in Verilog Case Item Expressions
Unsized integers in Verilog case item expressions may cause unpredictable results.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 505

Chapter 15: XST Verilog Language Support

In the following coding example, the case item expression 4 is an unsized integer that
causes unpredictable results. To avoid problems, size the 4 to 3 bits as follows:

reg [2:0] condition1;

always @(condition1)
begin
case(condition1)
4 : data_out = 2; // < will generate bad logic
3’d4 : data_out = 2; // < will work

endcase
end

Unsized Integers in Verilog Concatenations
Unsized integers in Verilog concatenations may cause unpredictable results.

If you use an expression that results in an unsized integer:

1. Assign the expression to a temporary signal.

2. Use the temporary signal in the concatenation as follows:

reg [31:0] temp;
assign temp = 4’b1111 % 2;
assign dout = {12/3,temp,din};

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
506 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

Verilog Attributes and Meta Comments
XST supports both of the following in Verilog:

• Verilog-2001 style attributes

Xilinx® recommends Verilog-2001 attributes since they are more generally accepted.

• Verilog meta comments

Meta comments are comments that are understood by the Verilog parser.

Verilog-2001 Attributes
XST supports Verilog-2001 attribute statements. Attributes are comments that pass
specific information to software tools such as synthesis tools. Verilog-2001 attributes
can be specified anywhere for operators or signals within module declarations and
instantiations. Other attribute declarations may be supported by the compiler, but
are ignored by XST.

Verilog Meta Comments
Use Verilog meta comments to:

• Set constraints on individual objects such as:

– module

– instance

– net

• Set directives on synthesis:

– parallel_case and full_case directives

– translate_on and translate_off directives

– all tool specific directives

Example:

syn_sharing

For more information, see:

XST Design Constraints

XST supports both C-style and Verilog style meta comments.

Writing Verilog Meta Comments
Style Syntax Line Rules
C-style /* ... */ Comments can be multiple

line

Verilog style // ... Comments end at the end of
the line

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 507

Chapter 15: XST Verilog Language Support

Supported Constraints
XST supports the following constraints:

• Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)

// synthesis translate_on
// synthesis translate_off

• Parallel Case (PARALLEL_CASE)

// synthesis parallel_case full_case
// synthesis parallel_case
// synthesis full_case

• Constraints on individual objects

Syntax
// synthesis attribute [of] ObjectName [is] AttributeValue

Coding Example
// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HUSET u1 MY_SET
// synthesis attribute fsm_extract of State2 is "yes"
// synthesis attribute fsm_encoding of State2 is "gray"

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
508 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

Verilog Constructs Supported in XST
This section discusses Verilog Constructs Supported in XST, including:

• Constants

• Data Types

• Continuous Assignments

• Procedural Assignments

• Design Hierarchies

• Compiler Directives

Note XST does not allow underscores as the first character of signal names (for
example, _DATA_1)

Verilog Constants Supported in XST
Constant Supported/Unsupported
Integer Constants Supported

Real Constants Supported

Strings Constants Unsupported

Verilog Data Types Supported in XST
XST supports all Verilog data types except as shown in the following table.

Net Types Drive Strengths Registers Named Events
tri0, tri1, and trireg
are unsupported.

All drive strengths
are ignored.

Real and realtime
registers are
unsupported.

All named events are
unsupported.

Verilog Continuous Assignments Supported in XST
Continuous Assignment Supported/Unsupported
Drive Strength Ignored

Delay Ignored

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 509

Chapter 15: XST Verilog Language Support

Verilog Procedural Assignments Supported in XST
XST supports Verilog Procedural Assignments except as noted below:
• assign

Supported with limitations
For more information, see:
Behavioral Verilog Assign and Deassign Statements

• deassign
Supported with limitations.
For more information, see:
Behavioral Verilog Assign and Deassign Statements

• force
Unsupported

• release
Unsupported

• forever statements
Unsupported

• repeat statements
Supported, but repeat value must be constant

• for statements
Supported, but bounds must be static

• delay (#)
Ignored

• event (@)
Unsupported

• wait
Unsupported

• Named Events
Unsupported

• Parallel Blocks
Unsupported

• Specify Blocks
Ignored

• Disable
Supported except in For and Repeat Loop statements.

Verilog Design Hierarchies Supported in XST
Design Hierarchy Supported/Unsupported
module definition Supported

macromodule definition Unsupported

hierarchical names Unsupported

defparam Supported

array of instances Supported

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
510 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

Verilog Compiler Directives Support in XST
Compiler Directive Supported/Unsupported
‘celldefine ‘endcelldefine Ignored

‘default_nettype Supported

‘define Supported

‘ifdef ‘else ‘endif Supported

‘undef, ‘ifndef, ‘elsif, Supported

‘include Supported

‘resetall Ignored

‘timescale Ignored

‘unconnected_drive

‘nounconnected_drive

Ignored

‘uselib Unsupported

‘file, ‘line Supported

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 511

Chapter 15: XST Verilog Language Support

Verilog System Tasks and Functions Supported in XST
This section discusses Verilog System Tasks and Functions Supported in XST, and
includes:

• Supported System Tasks and Functions

• Unsupported System Tasks

• Signed and Unsigned System Tasks

• Readmemb and Readmemh System Tasks

• Other System Tasks

• Verilog Display Syntax Example

Supported System Tasks and Functions
System Task or Function Supported/Unsupported Comment
$display Supported Escape sequences are limited to %d,

%b, %h, %o, %c and %s

$fclose Supported

$fdisplay Supported

$fgets Supported

$finish Supported $finish is supported for statically never
active conditional branches only

$fopen Supported

$fscanf Supported Escape sequences are limited to %b and
%d

$fwrite Supported

$monitor Ignored

$random Ignored

$readmemb Supported

$readmemh Supported

$signed Supported

$stop Ignored

$strobe Ignored

$time Ignored

$unsigned Supported

$write Supported Escape sequences are limited to %d,
%b, %h, %o, %c and %s

all others Ignored

Unsupported System Tasks
The XST Verilog compiler ignores unsupported system tasks.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
512 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

Signed and Unsigned System Tasks
The $signed and $unsigned system tasks can be called on any expression using the
following syntax:

• $signed(expr) or

• $unsigned(expr)

The return value from these calls is the same size as the input value. Its sign is forced
regardless of any previous sign.

Readmemb and Readmemh System Tasks
The $readmemb and $readmemh system tasks can be used to initialize block memories.

For more information, see:

Initializing RAM From an External File Coding Examples

Use $readmemb for binary and $readmemh for hexadecimal representation. To avoid
the possible difference between XST and simulator behavior, Xilinx® recommends that
you use index parameters in these system tasks. See the following coding example.

$readmemb("rams_20c.data",ram, 0, 7);

Other System Tasks
The remainder of the system tasks can be used to display information to your computer
screen and log file during processing, or to open and use a file during synthesis.
You must call these tasks from within initial blocks. XST supports a subset of escape
sequences, specifically:

• %h

• %d

• %o

• %b

• %c

• %s

Verilog Display Syntax Example
The following example shows the syntax for $display that reports the value of a binary
constant in decimal format:

parameter c = 8’b00101010;
initial
begin
$display ("The value of c is %d", c);

end

The following information is written to the log file during the HDL Analysis phase:

Analyzing top module <example>.
c = 8’b00101010
"foo.v" line 9: $display : The value of c is 42

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 513

Chapter 15: XST Verilog Language Support

Verilog Primitives
This section discusses Verilog Primitives, and includes:

• Supported Primitives

• Unsupported Primitives

• Syntax

Supported Primitives
XST supports the following Verilog gate-level primitives except as indicated:

• Pulldown and Pullup

Unsupported

• Drive strength and delay

Ignored

• Arrays of primitives

Unsupported

Unsupported Primitives
XST does not support:

• Verilog switch-level primitives, such as:

– cmos, nmos, pmos, rcmos, rnmos, rpmos

– rtran, rtranif0, rtranif1, tran, tranif0, tranif1

• Verilog user-defined primitives

Syntax
gate_type instance_name (output, inputs,...);

Coding Example
and U1 (out, in1, in2); bufif1 U2 (triout, data, trienable);

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
514 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 15: XST Verilog Language Support

Verilog Reserved Keywords
Keywords marked with an asterisk (*) are reserved by Verilog, but are not supported by
XST.

always and assign automatic

begin buf bufif0 bufif1
case casex casez cell*
cmos config* deassign default

defparam design* disable edge

else end endcase endconfig*

endfunction endgenerate endmodule endprimitive

endspecify endtable endtask event

for force forever fork

function generate genvar highz0

highz1 if ifnone incdir*

include* initial inout input

instance* integer join large

liblist* library* localparam* macromodule

medium module nand negedge
nmos nor noshow-cancelled* not

notif0 notif1 or output

parameter pmos posedge primitive

pull0 pull1 pullup pulldown

pulsestyle- _ondetect* pulsestyle- _onevent* rcmos real

realtime reg release repeat

rnmos rpmos rtran rtranif0

rtranif1 scalared show-cancelled* signed

small specify specparam strong0

strong1 supply0 supply1 table

task time tran tranif0

tranif1 tri tri0 tri1

triand trior trireg use*

vectored wait wand weak0

weak1 while wire wor

xnor xor

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 515

Chapter 15: XST Verilog Language Support

Verilog-2001 Support in XST
XST supports the following Verilog-2001 features:

• Generate statements

• Combined port/data type declarations

• ANSI-style port lists

• Module parameter port lists

• ANSI C style task/function declarations

• Comma separated sensitivity list

• Combinatorial logic sensitivity

• Default nets with continuous assigns

• Disable default net declarations

• Indexed vector part selects

• Multi-dimensional arrays

• Arrays of net and real data types

• Array bit and part selects

• Signed reg, net, and port declarations

• Signed based integer numbers

• Signed arithmetic expressions

• Arithmetic shift operators

• Automatic width extension past 32 bits

• Power operator

• N sized parameters

• Explicit in-line parameter passing

• Fixed local parameters

• Enhanced conditional compilation

• File and line compiler directives

• Variable part selects

• Recursive Tasks and Functions

• Constant Functions

For more information, see:

• Sutherland, Stuart. Verilog 2001: A Guide to the New Features of the VERILOG Hardware
Description Language (2002)

• IEEE Standards Association. 1364-2001: IEEE Standard Verilog Hardware Description
Language (2001)

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
516 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16

XST Behavioral Verilog Language
Support

This chapter discusses XST Behavioral Verilog Language Support, and includes:

• Behavioral Verilog Variable Declarations

• Behavioral Verilog Initial Values

• Behavioral Verilog Local Reset

• Behavioral Verilog Arrays

• Behavioral Verilog Multi-Dimensional Arrays

• Behavioral Verilog Data Types

• Behavioral Verilog Legal Statements

• Behavioral Verilog Expressions

• Behavioral Verilog Blocks

• Behavioral Verilog Modules

• Behavioral Verilog Module Declarations

• Behavioral Verilog Continuous Assignments

• Behavioral Verilog Procedural Assignments

• Behavioral Verilog Constants

• Behavioral Verilog Macros

• Behavioral Verilog Include Files

• Behavioral Verilog Comments

• Behavioral Verilog Generate Statements

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 517

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Variable Declarations
Variables in Verilog may be declared as integers or real. These declarations are intended
for use in test code only. Verilog provides data types such as reg and wire for actual
hardware description.

Variables in Verilog
Data Type Variable Given

Value In
Default Width Verilog-2001

reg procedural block one bit (scalar) signed or unsigned

wire continuous
assignment

one bit (scalar) signed or unsigned

Coding Example
To specify an N-bit width (vectors) for a declared reg or wire, the left and right bit
positions are defined in square brackets separated by a colon.

reg [3:0] arb_priority;
wire [31:0] arb_request;
wire signed [8:0] arb_signed;

where

• arb_request[31] is the MSB

• arb_request[0] is the LSB

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
518 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Initial Values
In Verilog-2001, you can initialize registers when you declare them.

The value:

• Is a constant

• Cannot depend on earlier initial values

• Cannot be a function or task call

• Can be a parameter value propagated to the register

• Specifies all bits of a vector

When you assign a register an initial value in a declaration, XST sets this initial value on
the output of the register:

• At global reset, or

• At power up

An initial value assigned in this manner:

• Is carried in the NGC file as an INIT attribute on the register

• Is independent of any local reset

reg arb_onebit = 1’b0;
reg [3:0] arb_priority = 4’b1011;

You can also assign a set/reset (initial) value to a register in the behavioral Verilog code.
Assign a value to a register when the register reset line goes to the appropriate value as
shown in the following coding example.

always @(posedge clk)
begin
if (rst)
arb_onebit <= 1’b0;

end
end

When you set the initial value of a variable in the behavioral code, it is implemented in
the design as a flip-flop whose output can be controlled by a local reset. As such, it is
carried in the NGC file as an FDP or FDC flip-flop.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 519

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Local Reset
Local reset is independent of global reset. Registers controlled by a local reset may be set
to a different value than ones whose value is only reset at global reset (power up). In
the following coding example, the register, arb_onebit, is set to 0 at global reset, but
a pulse on the local reset (rst) can change its value to 1.

Coding Example
module mult(clk, rst, A_IN, B_OUT);
input clk,rst,A_IN;
output B_OUT;

reg arb_onebit = 1’b0;

always @(posedge clk or posedge rst)
begin
if (rst)
arb_onebit <= 1’b1;

else
arb_onebit <= A_IN;

end
end

B_OUT <= arb_onebit;
endmodule

This sets the set/reset value on the register output at initial power up, but since this is
dependent upon a local reset, the value changes whenever the local set/reset is activated.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
520 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Arrays
Verilog allows arrays of reg and wires to be defined as shown in the following coding
examples.

Behavioral Verilog Arrays Coding Example
The following coding example describes an array of 32 elements each, 4 bits wide which
can be assigned in behavioral Verilog code:

reg [3:0] mem_array [31:0];

Structural Verilog Arrays Coding Example
The following coding example describes an array of 64 elements each 8 bits wide which
can be assigned only in structural Verilog code:

wire [7:0] mem_array [63:0];

Behavioral Verilog Multi-Dimensional Arrays
XST supports multi-dimensional array types of up to two dimensions. Multi-dimensional
arrays can be any net or any variable data type. You can code assignments and
arithmetic operations with arrays, but you cannot select more than one element of
an array at one time. You cannot pass multi-dimensional arrays to system tasks or
functions, or to regular tasks or functions.

Coding Example One
The following Verilog coding example describes an array of 256 x 16 wire elements each
8 bits wide, which can be assigned only in structural Verilog code:

wire [7:0] array2 [0:255][0:15];

Coding Example Two
The following Verilog coding example describes an array of 256 x 8 register elements,
each 64 bits wide, which can be assigned in behavioral Verilog code:

reg [63:0] regarray2 [255:0][7:0];

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 521

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Data Types
This section discusses Behavioral Verilog Data Types, and includes:
• Bit Data Type Values
• Supported Verilog Data Types
• Nets and Registers

Bit Data Type Values
The Verilog representation of the bit data type contains the following values:

• 0

logic zero
• 1

logic one
• x

unknown logic value
• z

high impedance

Supported Verilog Data Types
XST supports the following Verilog data types:
• Net

– wire
– tri
– triand/wand
– trior/wor

• Registers
– reg
– integer

• Supply nets
– supply0
– supply1

• Constants
parameter

• Multi-Dimensional Arrays (Memories)

Nets and Registers
Nets and registers can be either:
• Single bit (scalar)
• Multiple bit (vectors)

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
522 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Coding Example
The following Behavioral Verilog coding example shows sample Verilog data types
found in the declaration section of a Verilog module.

wire net1; // single bit net
reg r1; // single bit register
tri [7:0] bus1; // 8 bit tristate bus
reg [15:0] bus1; // 15 bit register
reg [7:0] mem[0:127]; // 8x128 memory register
parameter state1 = 3’b001; // 3 bit constant
parameter component = "TMS380C16"; // string

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 523

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Legal Statements
The following statements are legal in Behavioral Verilog.

• Variable and signal assignments

– Variable = expression

– if (condition) statement

– else statement

– case (expression)

expression: statement
...
default: statement
endcase

– for (variable = expression; condition; variable = variable + expression) statement

– while (condition) statement

– forever statement

– functions and tasks

• All variables are declared as integer or reg.

Note A variable cannot be declared as a wire.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
524 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Expressions
An expression involves constants and variables with arithmetic, logical, relational, and
conditional operators as shown in Operators Supported in Behavioral Verilog.

The logical operators are further divided as bit-wise versus logical, depending on
whether it is applied to an expression involving several bits or a single bit.

Operators Supported in Behavioral Verilog
Arithmetic Logical Relational Conditional
+ & < ?
- && ==

* | ===

** || <=

/ ^ >=

% ~ >=

~^ !=

^~ !==
<< >
>>
<<<
>>>

Expressions Supported in Behavioral Verilog
Expression Symbol Supported/Unsupported
Concatenation {} Supported

Replication {{}} Supported

Arithmetic

+, -, *,** Supported

/ Supported only if second operand is a
power of 2

Modulus % Supported only if second operand is a
power of 2

Addition + Supported

Subtraction - Supported

Multiplication * Supported

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 525

Chapter 16: XST Behavioral Verilog Language Support

Expression Symbol Supported/Unsupported
Power ** Supported

• Both operands are constants,
with the second operand being
non-negative.

• If the first operand is a 2, then the
second operand may be a variable.

• XST does not support the real
data type. Any combination of
operands that results in a real type
causes an error.

• The values X (unknown) and Z
(high impedance) are not allowed.

Division / Supported

XST generates incorrect logic for the
division operator between signed
and unsigned constants. Example:
-1235/3’b111

Relational >, <, >=, <= Supported

Logical Negation ! Supported

Logical AND && Supported

Logical OR || Supported

Logical Equality == Supported

Logical Inequality != Supported

Case Equality === Supported

Case Inequality !== Supported

Bitwise Negation ~ Supported

Bitwise AND & Supported

Bitwise Inclusive OR | Supported

Bitwise Exclusive OR ^ Supported

Bitwise Equivalence ~^, ^~ Supported

Reduction AND & Supported

Reduction NAND ~& Supported

Reduction OR | Supported

Reduction NOR ~| Supported

Reduction XOR ^ Supported

Reduction XNOR ~^, ^~ Supported

Left Shift << Supported

Right Shift Signed >>> Supported

Left Shift Signed <<< Supported

Right Shift >> Supported

Conditional ?: Supported

Event OR or, ’,’ Supported

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
526 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Results of Evaluating Expressions in Behavioral Verilog
The following table lists the results of evaluating expressions using the more frequently
used operators supported by XST.

The (===) and (!==) operators are special comparison operators useful in simulations to
check if a variable is assigned a value of (x) or (z). They are treated as (==) or (!=) in
synthesis.

a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b
0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 1 1 1

0 x x 0 x 1 0 0 x x x

0 z x 0 x 1 0 0 x x x

1 0 0 0 1 1 0 0 1 1 1

1 1 1 1 0 0 1 1 1 1 0

1 x x 0 x 1 x x 1 1 x

1 z x 0 x 1 x x 1 1 x

x 0 x 0 x 1 0 0 x x x

x 1 x 0 x 1 x x 1 1 x

x x x 1 x 0 x x x x x

x z x 0 x 1 x x x x x

z 0 x 0 x 1 0 0 x x x

z 1 x 0 x 1 x x 1 1 x

z x x 0 x 1 x x x x x

z z x 1 x 0 x x x x x

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 527

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Blocks
Block statements are used to group statements together.

XST supports sequential blocks only. Within these blocks, the statements are executed
in the order listed.

Block statements are designated by begin and end keywords.

XST does not support parallel blocks.

Behavioral Verilog Modules
In Verilog a design component is represented by a module. The connections between
components are specified within module instantiation statements. Such a statement
specifies an instance of a module. Each module instantiation statement has a name
(instance name). In addition to the name, a module instantiation statement contains an
association list that specifies which actual nets or ports are associated with which local
ports (formals) of the module declaration.

All procedural statements occur in blocks that are defined inside modules. The two
kinds of procedural blocks are:

• initial block

• always block

Within each block, Verilog uses a begin and end to enclose the statements. Since initial
blocks are ignored during synthesis, only always blocks are discussed. The always
blocks usually take the following format:

always
begin
statement
....

end

Each statement is a procedural assignment line terminated by a semicolon.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
528 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Module Declarations
The I/O ports of the circuit are declared in the module declaration. Each port has:

• A name

• A mode

– in

– out

– inout

The input and output ports defined in the module declaration called EXAMPLE in the
following coding example are the basic input and output I/O signals for the design. The
in-out port in Verilog is analogous to a bi-directional I/O pin on the device with the data
flow for output versus input being controlled by the enable signal to the tristate buffer.

The following coding example describes E as a tristate buffer with a high-true output
enable signal.

• If oe = 1, the value of signal A is output on the pin represented by E.

• If oe = 0, the buffer is in high impedance (Z), and any input value driven on the
pin E (from the external logic) is brought into the device and fed to the signal
represented by D.

Coding Example
module EXAMPLE (A, B, C, D, E);
input A, B, C;
output D;
inout E;
wire D, E;
...
assign E = oe ? A : 1’bz;
assign D = B & E;
...

endmodule

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 529

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Continuous Assignments
Continuous assignments model combinatorial logic in a concise way.

XST supports both explicit and implicit continuous assignments.

• Explicit continuous assignments are introduced by the assign keyword after the net
has been separately declared.

• Implicit continuous assignments combine declaration and assignment.

• XST ignores delays and strengths given to a continuous assignment.

• Continuous assignments are allowed on wire and tri data types only.

Explicit Continuous Assignment Coding Example
wire par_eq_1;
....
assign par_eq_1 = select ? b : a;

Implicit Continuous Assignment Coding Example
wire temp_hold = a | b;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
530 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Procedural Assignments
This section discusses Behavioral Verilog Procedural Assignments, and includes:
• About Behavioral Verilog Procedural Assignments
• Behavioral Verilog Combinatorial Always Blocks
• Behavioral Verilog If... Else Statement
• Behavioral Verilog Case Statements
• Behavioral Verilog For and Repeat Loops
• Behavioral Verilog While Loops
• Behavioral Verilog Sequential Always Blocks
• Behavioral Verilog Assign and Deassign Statements
• Behavioral Verilog Assignment Extension Past 32 Bits
• Behavioral Verilog Tasks and Functions
• Behavioral Verilog Recursive Tasks and Functions
• Behavioral Verilog Constant Functions
• Behavioral Verilog Blocking Versus Non-Blocking Procedural Assignments

About Behavioral Verilog Procedural Assignments
Behavioral Verilog procedural assignments are:
• Used to assign values to variables declared as regs.
• Introduced by always blocks, tasks, and functions
• Usually used to model registers and Finite State Machine (FSM) components.

XST supports:
• Combinatorial functions
• Combinatorial and sequential tasks
• Combinatorial and sequential always blocks

Behavioral Verilog Combinatorial Always Blocks
Combinatorial logic can be modeled efficiently using two forms of Verilog time control
statements:
• # (pound)
• * (asterisk)

Since the # (pound) time control statement is ignored for synthesis, this discussion
describes modeling combinatorial logic with the * (asterisk) time control statement.

A combinatorial always block has a sensitivity list appearing within parentheses after
the word always. An always block is activated if an event (value change or edge)
appears on one of the sensitivity list signals. This sensitivity list can contain any signal
that appears in conditions (if or case, for example), and any signal appearing on the
right-hand side of an assignment. By substituting an * (asterisk) without parentheses for
a list of signals, the always block is activated for an event in any of the always block’s
signals as described above.

In combinatorial processes, if a signal is not explicitly assigned in all branches of if or
case statements, XST generates a latch to hold the last value. To avoid latch creation, be
sure that all assigned signals in a combinatorial process are always explicitly assigned in
all paths of the process statements.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 531

Chapter 16: XST Behavioral Verilog Language Support

The following statements can be used in a process:
• Variable and signal assignment
• if...else statement
• case statement
• for and while loop statement
• Function and task call

Behavioral Verilog If... Else Statement
If... else statements use true/false conditions to execute statements.
• If the expression evaluates to true, the first statement is executed.
• If the expression evaluates to false (or x or z) the else statement is executed.

A block of multiple statements may be executed using begin and end keywords.

If... else statements may be nested.

Coding Example
The following coding example shows how a MUX can be described using an if... else
statement:

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin
if (sel[1])
if (sel[0])
outmux = d;

else
outmux = c;

else
if (sel[0])
outmux = b;

else
outmux = a;

end
endmodule

Behavioral Verilog Case Statements
A case statement:
• Performs a comparison to an expression to evaluate one of a number of parallel

branches.
• Evaluates the branches in the order they are written.

– The first branch that evaluates to true is executed.
– If none of the branches match, the default branch is executed.

Do not use unsized integers in case statements. Always size integers to a specific number
of bits, or results can be unpredictable.

casez treats all z values in any bit position of the branch alternative as a dont care.

casex treats all x and z values in any bit position of the branch alternative as a dont care.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
532 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

The question mark (?) can be used as a dont care in either the casez or casex case
statements.

Coding Example
The following coding example shows how a MUX can be described using a case
statement:

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin
case (sel)
2’b00: outmux = a;
2’b01: outmux = b;
2’b10: outmux = c;
default: outmux = d;

endcase
end

endmodule

The preceding case statement evaluates the values of the input sel in priority order. To
avoid priority processing, Xilinx® recommends that you use a parallel-case Verilog
attribute to ensure parallel evaluation of the sel inputs as shown in the following:

(* parallel_case *) case(sel)

Behavioral Verilog For and Repeat Loops
When using always blocks, repetitive or bit slice structures can also be described using
the for statement or the repeat statement.

For Statement
The for statement is supported for:
• Constant bounds
• Stop test condition using one of the following operators:

– <
– <=
– >
– >=

• Next step computation falling in one of the following specifications:
– var = var + step
– var = var - step

where
♦ var is the loop variable
♦ step is a constant value

Repeat Statement
The repeat statement is supported for constant values only.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 533

Chapter 16: XST Behavioral Verilog Language Support

Disable Statements
Disable statements are not supported.

Coding Example
module countzeros (a, Count);
input [7:0] a;
output [2:0] Count;
reg [2:0] Count;
reg [2:0] Count_Aux;
integer i;

always @(a)
begin
Count_Aux = 3’b0;

for (i = 0; i < 8; i = i+1)
begin
if (!a[i])
Count_Aux = Count_Aux+1;

end
Count = Count_Aux;
end

endmodule

Behavioral Verilog While Loops
When using always blocks, use the while statement to execute repetitive procedures. A
while loop executes other statements until its test expression becomes false. It is not
executed if the test expression is initially false.

• The test expression is any valid Verilog expression.

• To prevent endless loops, use -loop_iteration_limit.

• while loops can have disable statements. The disable statement is used inside a
labeled block, since the syntax is disable <blockname>.

Coding Example
parameter P = 4;
always @(ID_complete)
begin : UNIDENTIFIED
integer i;
reg found;
unidentified = 0;
i = 0;
found = 0;
while (!found && (i < P))
begin
found = !ID_complete[i];
unidentified[i] = !ID_complete[i];
i = i + 1;

end
end

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
534 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Sequential Always Blocks
Sequential circuit description is based on always blocks with a sensitivity list. The
sensitivity list contains a maximum of three edge-triggered events:

• A clock signal event (mandatory)

• A reset signal event (possibly)

• A set signal event

One, and only one, if...else statement is accepted in such an always block.

An asynchronous part may appear before the synchronous part in the first and the
second branch of the if...else statement. Signals assigned in the asynchronous part are
assigned to the following constant values:

• 0

• 1

• X

• Z

• Any vector composed of these values

These same signals are also assigned in the synchronous part (that is, the last branch
of the if...else statement). The clock signal condition is the condition of the last branch
of the if...else statement.

8 Bit Register Using an Always Block Behavioral Verilog Coding Example
module seq1 (DI, CLK, DO);
input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
DO <= DI ;

8 Bit Register with Asynchronous Reset (High-True) Using an Always Block
Behavioral Verilog Coding Example
module EXAMPLE (DI, CLK, RST, DO);
input [7:0] DI;
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)
DO <= 8’b00000000;

else
DO <= DI;

endmodule

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 535

Chapter 16: XST Behavioral Verilog Language Support

8 Bit Counter with Asynchronous Reset (Low-True) Using an Always Block
Behavioral Verilog Coding Example
module seq2 (CLK, RST, DO);
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)
DO <= 8’b00000000;

else
DO <= DO + 8’b00000001;

endmodule

Behavioral Verilog Assign and Deassign Statements
Assign and deassign statements are supported within simple templates.

Behavioral Verilog Assign and Deassign Statements General Template
module assig (RST, SELECT, STATE, CLOCK, DATA_IN);
input RST;
input SELECT;
input CLOCK;
input [0:3] DATA_IN;
output [0:3] STATE;
reg [0:3] STATE;

always @ (RST)
if(RST)
begin
assign STATE = 4’b0;

end
else
begin
deassign STATE;

end

always @ (posedge CLOCK)
begin
STATE <= DATA_IN;

end
endmodule

The main limitations on support of the assign/deassign statement in XST are:

• For a given signal, there is only one assign/deassign statement.

• The assign/deassign statement is performed in the same always block through an
if/else statement.

• You cannot assign a bit/part select of a signal through an assign/deassign statement.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
536 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Assign/Deassign Statement
For a given signal, there is only one assign/deassign statement. For example, XST rejects
the following design:

module dflop (RST, SET, STATE, CLOCK, DATA_IN);
input RST;
input SET;
input CLOCK;
input DATA_IN;
output STATE;
reg STATE;

always @ (RST) // block b1
if(RST)
assign STATE = 1’b0;

else
deassign STATE;

always @ (SET) // block b1
if(SET)
assign STATE = 1’b1;

else
deassign STATE;

always @ (posedge CLOCK) // block b2
begin
STATE <= DATA_IN;

end
endmodule

Behavioral Verilog Assign/Deassign Statement Performed in Same
Always Block

The assign/deassign statement is performed in the same always block through an
if...else statement. For example, XST rejects the following design:

module dflop (RST, SET, STATE, CLOCK, DATA_IN);
input RST;
input SET;
input CLOCK;
input DATA_IN;
output STATE;

reg STATE;

always @ (RST or SET) // block b1
case ({RST,SET})
2’b00: assign STATE = 1’b0;
2’b01: assign STATE = 1’b0;
2’b10: assign STATE = 1’b1;
2’b11: deassign STATE;

endcase

always @ (posedge CLOCK) // block b2
begin
STATE <= DATA_IN;

end
endmodule

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 537

Chapter 16: XST Behavioral Verilog Language Support

Cannot Assign Bit/Part Select of Signal Through Assign/Deassign
Statement

You cannot assign a bit/part select of a signal through an assign/deassign statement. For
example, XST rejects the following design:

module assig (RST, SELECT, STATE, CLOCK, DATA_IN);
input RST;
input SELECT;
input CLOCK;
input [0:7] DATA_IN;
output [0:7] STATE;

reg [0:7] STATE;

always @ (RST) // block b1
if(RST)
begin
assign STATE[0:7] = 8’b0;

end
else
begin
deassign STATE[0:7];

end

always @ (posedge CLOCK) // block b2
begin
if (SELECT)
STATE [0:3] <= DATA_IN[0:3];

else
STATE [4:7] <= DATA_IN[4:7];

end

Behavioral Verilog Assignment Extension Past 32 Bits
If the expression on the left-hand side of an assignment is wider than the expression on
the right-hand side, the left-hand side is padded to the left according to the following
rules:

• If the right-hand expression is signed, the left-hand expression is padded with the
sign bit:

– 0 for positive

– 1 for negative

– z for high impedance

– x for unknown

• If the right-hand expression is unsigned, the left-hand expression is padded with
0(zeros).

• For unsized x or z constants only, the following rule applies. If the value of
the right-hand expression’s leftmost bit is z (high impedance) or x (unknown),
regardless of whether the right-hand expression is signed or unsigned, the left-hand
expression is padded with that value (z or x, respectively).

These rules follow the Verilog-2001 standard. They are not backwardly compatible
with Verilog-1995.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
538 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Tasks and Functions
The declaration of a function or task is intended for handling blocks used multiple times
in a design. They must be declared and used in a module. The heading part contains the
parameters: input parameters (only) for functions and input/output/inout parameters
for tasks. The return value of a function can be declared either signed or unsigned. The
content is similar to the combinatorial always block content.

Coding Example One
The following coding example shows a function declared within a module.

• The ADD function declared is a single-bit adder.

• This function is called four times with the proper parameters in the architecture
to create a 4-bit adder.

module comb15 (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
wire [1:0] S0, S1, S2, S3;
function signed [1:0] ADD;
input A, B, CIN;
reg S, COUT;
begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
ADD = {COUT, S};

end
endfunction

assign S0 = ADD (A[0], B[0], CIN),
S1 = ADD (A[1], B[1], S0[1]),
S2 = ADD (A[2], B[2], S1[1]),
S3 = ADD (A[3], B[3], S2[1]),
S = {S3[0], S2[0], S1[0], S0[0]},

COUT = S3[1];
endmodule

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 539

Chapter 16: XST Behavioral Verilog Language Support

Coding Example Two
The following coding example shows Coding Example One described with a task.

module EXAMPLE (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;

begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
C = {COUT, S};

end
endtask

always @(A or B or CIN)
begin
ADD (A[0], B[0], CIN, S0);
ADD (A[1], B[1], S0[1], S1);
ADD (A[2], B[2], S1[1], S2);
ADD (A[3], B[3], S2[1], S3);
S = {S3[0], S2[0], S1[0], S0[0]};
COUT = S3[1];

end
endmodule

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
540 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Recursive Tasks and Functions
Verilog-2001 supports recursive tasks and functions.

You can use recursion only with the automatic keyword.

To prevent endless recursive calls, the number of recursions is limited by default to 64.
Use -recursion_iteration_limit to control the number of allowed recursive calls.

Coding Example
function automatic [31:0] fac;
input [15:0] n;
if (n == 1)
fac = 1;

else
fac = n * fac(n-1); //recursive function call

endfunction

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 541

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Constant Functions
Verilog-2001 adds support for constant functions. XST supports function calls to
calculate constant values.

Coding Example

module rams_cf (clk, we, a, di, do);
parameter DEPTH=1024;
input clk;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;

reg [3:0] ram [size(DEPTH):0];

always @(posedge clk) begin
if (we)
ram[a] <= di;
end
assign do = ram[a];

function integer size;
input depth;
integer i;
begin

size=1;
for (i=0; 2**i<depth; i=i+1)
size=i+1;

end
endfunction

endmodule

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
542 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Blocking Versus Non-Blocking Procedural
Assignments

The pound (#) and at symbol (@) time control statements delay execution of the
statement following them until the specified event is evaluated as true. Blocking and
non-blocking procedural assignments have time control built into their respective
assignment statement. The pound (#) delay is ignored for synthesis.

Behavioral Verilog Blocking Procedural Assignment Syntax Example
The syntax for a blocking procedural assignment is shown in the following example.

reg a; a = #10 (b | c);

or

if (in1) out = 1’b0; else out = in2;

As the name implies, these types of assignments block the current process from
continuing to execute additional statements at the same time. These should mainly be
used in simulation.

Non-blocking assignments, on the other hand, evaluate the expression when the
statement executes, but allow other statements in the same process to execute as well at
the same time. The variable change occurs only after the specified delay.

Behavioral Verilog Non-Blocking Procedural Assignment Syntax Example
The following syntax example shows the syntax for a non-blocking procedural
assignment.

variable <= @(posedge_or_negedge_bit) expression;

Coding Example
The following coding example shows how to use a non-blocking procedural assignment.

if (in1) out <= 1’b1; else out <= in2;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 543

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Constants
By default, constants in Verilog are assumed to be decimal integers. They can be
specified explicitly in binary, octal, decimal, or hexadecimal by prefacing them with the
appropriate syntax. For example, the following all represent the same value:

• 4’b1010

• 4’o12

• 4’d10

• 4’ha

Behavioral Verilog Macros
Verilog provides a way to define macros as shown in the following coding example.

‘define TESTEQ1 4’b1101

Later in the design code, a reference to the defined macro is made as follows:

if (request == ‘TESTEQ1)

This is shown in the following coding example.

‘define myzero 0
assign mysig = ‘myzero;

The Verilog ‘ifdef and ‘endif constructs determine whether or not a macro is defined.
These constructs are used to define conditional compilation. If the macro called out by
the ‘ifdef command has been defined, that code is compiled. If not, the code following
the ‘else command is compiled. The ‘else is not required, but ‘endif must complete
the conditional statement.

The ‘ifdef and ‘endif constructs are shown in the following coding example.

‘ifdef MYVAR
module if_MYVAR_is_declared;
...
endmodule
‘else
module if_MYVAR_is_not_declared;
...
endmodule
‘endif

Verilog Macros (-define) allows you to define (or redefine) Verilog macros. This allows
you to easily modify the design configuration without any Hardware Description
Language (HDL) source modifications, such as for IP core generation and testing flows.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
544 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Include Files
Verilog allows you to separate source code into more than one file. To reference the code
contained in another file, use the following syntax in the current file:

‘include "path/file-to-be-included"

The path can be relative or absolute.

Multiple ‘include statements are allowed in a single Verilog file. This feature makes
your code more manageable in a team design environment where different files describe
different modules of the design.

Identifying the Directory
To enable the file in your ‘include statement to be recognized, identify the directory
where it resides, either to ISE® Design Suite or to XST.

• Since ISE Design Suite searches the ISE Design Suite project directory by default,
adding the file to your project directory identifies the file to ISE Design Suite

• To direct ISE Design Suite to a different directory, include a path (relative or
absolute) in the ‘include statement in your source code.

• To point XST directly to your include file directory, use Verilog Include Directories
(-vlgincdir)

• If the ‘include file is required for ISE Design Suite to construct the design hierarchy,
the file need not be added to the project, but the file must either:

– Reside in the project directory

or

– Be referenced by a relative or absolute path

Include File Conflicts
Conflicts may occur when the specified file:

• Has been added to an ISE Design Suite project directory

and

• Is specified with ‘include

Coding Example
‘timescale 1 ns/1 ps
‘include "modules.v"
...

XST issues an error message:

ERROR:Xst:1068 - fifo.v, line 2. Duplicate declarations of
module’RAMB4_S8_S8’

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 545

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Comments
Behavioral Verilog supports two forms of comments as shown in the following table.
Behavioral Verilog comments are similar to the comments used in a language such as
C++.

Symbol Description Used for Example
// Double forward

slash
One-line comments // Define a one-line comment as illustrated by this sentence

/* Slash asterisk Multi-line comments /* Define a multi-line comment by enclosing it as illustrated
by this sentence */

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
546 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 16: XST Behavioral Verilog Language Support

Behavioral Verilog Generate Statements
A generate statement allows you to dynamically create Verilog code from conditional
statements. This allows you to create repetitive structures or structures that are
appropriate only under certain conditions.

Structures likely to be created using a generate statement are:

• Primitive or module instances

• Initial or always procedural blocks

• Continuous assignments

• Net and variable declarations

• Parameter redefinitions

• Task or function definitions

Generate For Statements
Use a Behavioral Verilog generate for loop to create one or more instances that can be
placed inside a module. Use the generate for loop the same way you would a normal
Verilog for loop, with the following limitations:

• The index for a generate for loop has a genvar variable.

• The assignments in the for loop control refers to the genvar variable.

• The contents of the for loop are enclosed by begin and end statements. The begin
statement is named with a unique qualifier.

Coding Example
Following is an 8-bit adder using a generate for loop behavioral Verilog coding example.

generate
genvar i;

for (i=0; i<=7; i=i+1)
begin : for_name
adder add (a[8*i+7 : 8*i], b[8*i+7 : 8*i], ci[i], sum_for[8*i+7 : 8*i], c0_or[i+1]); end

endgenerate

Generate If... else Statements
Use a Behavioral Verilog generate if... else statement inside a generate block to
conditionally control which objects are generated.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 547

Chapter 16: XST Behavioral Verilog Language Support

Coding Example
In the following coding example of a generate if... else statement:

• generate controls the type of multiplier that is instantiated

• The contents of each branch of the if... else statement are enclosed by begin and
end statements.

• The begin statement is named with a unique qualifier.

generate
if (IF_WIDTH < 10)
begin : if_name
adder # (IF_WIDTH) u1 (a, b, sum_if);
end
else
begin : else_name
subtractor # (IF_WIDTH) u2 (a, b, sum_if);
end

endgenerate

Generate Case Statements
Use a Behavioral Verilog generate case statement inside a generate block to conditionally
control which objects are generated. Use a generate case statement when there are
several conditions to be tested to determine what the generated code would be.

• Each test statement in a generate case is enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

Coding Example
In the following coding example of a generate case statement, generate controls the
type of adder that is instantiated:

generate
case (WIDTH)
1:
begin : case1_name
adder #(WIDTH*8) x1 (a, b, ci, sum_case, c0_case);

end
2:
begin : case2_name
adder #(WIDTH*4) x2 (a, b, ci, sum_case, c0_case);

end
default:
begin : d_case_name
adder x3 (a, b, ci, sum_case, c0_case);

end
endcase

endgenerate

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
548 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 17

XST Mixed Language Support
This chapter discusses XST Mixed Language Support, and includes:
• About XST Mixed Language Support
• Mixed Language Project Files
• VHDL and Verilog Boundary Rules in Mixed Language Projects
• Port Mapping in Mixed Language Projects
• Generics Support in Mixed Language Projects
• LSO Files in Mixed Language Projects

About XST Mixed Language Support
XST supports mixed VHDL and Verilog projects.
• Mixing VHDL and Verilog is restricted to design unit (cell) instantiation only.

– A VHDL design can instantiate a Verilog module.
– A Verilog design can instantiate a VHDL entity.
– No other mixing between VHDL and Verilog is not supported.

• In a VHDL design, a restricted subset of VHDL types, generics, and ports is allowed
on the boundary to a Verilog module.

• In a Verilog design, a restricted subset of Verilog types, parameters, and ports is
allowed on the boundary to a VHDL entity or configuration.

• XST binds VHDL design units to a Verilog module during Elaboration.
• Component instantiation based on default binding is used for binding Verilog

modules to a VHDL design unit.
• Configuration specification, direct instantiation and component configurations are

not supported for a Verilog module instantiation in VHDL.
• VHDL and Verilog project files are unified.
• VHDL and Verilog libraries are logically unified.
• Specification of the work directory for compilation (xsthdpdir), previously

available only for VHDL, is now available for Verilog.
• The xhdp.inimechanism for mapping a logical library name to a physical directory

name on the host file system, previously available only for VHDL, is now available
for Verilog.

• Mixed language projects accept a search order used for searching unified logical
libraries in design units (cells). During Elaboration, XST follows this search order
for picking and binding a VHDL entity or a Verilog module to the mixed language
project.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 549

Chapter 17: XST Mixed Language Support

Mixed Language Project Files
XST uses dedicated mixed language project files to support mixed VHDL and Verilog
designs. You can use this mixed language format not only for mixed projects, but also
for purely VHDL or Verilog projects.

• If you run XST from ISE® Design Suite, XST creates the project file. It is always
a mixed language project file.

• If you run XST from the command line, you must create the mixed language project
file yourself.

Project Type Set -ifmt to
command line mixed or value omitted

VHDL vhdl

Verilog verilog

The VHDL and Verilog formats can be used for existing designs.

The syntax for invoking a library or any external file in a mixed language project is:

language library file_name.ext

Coding Example
The following example shows how to invoke libraries in a mixed language project.

vhdl work my_vhdl1.vhd
verilog work my_vlg1.v
vhdl my_vhdl_lib my_vhdl2.vhd
verilog my_vlg_lib my_vlg2.v

• Each row specifies a single Hardware Description Language (HDL) design file.

• Each column has the meaning shown in the following table.

Column Syntax Example Specifies
First language vhdl Whether the HDL file

is VHDL or Verilog

Second library work The logic library
where the HDL is
compiled. The default
logic library is work.

Third file_name.ext my_vhdl1.vhd The name of the HDL
file.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
550 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 17: XST Mixed Language Support

VHDL and Verilog Boundary Rules in Mixed Language Projects
The boundary between VHDL and Verilog is enforced at the design unit level.

A VHDL design can instantiate a Verilog module.

A Verilog design can instantiate a VHDL entity.

Instantiating a Verilog Module in a VHDL Design
To instantiate a Verilog module in a VHDL design:
1. Declare a VHDL component with the same name (respecting case sensitivity) as

the Verilog module you want to instantiate. If the Verilog module name is not all
lowercase, use the case property to preserve the case of your Verilog module.
a. In ISE® Design Suite, select:

Process > Process Properties > Synthesis Options > Case > Maintain
or

b. Set the -case command line option to maintain
2. Instantiate the Verilog component as if you were instantiating a VHDL component.

Using a VHDL configuration declaration, you could attempt to bind this component to a
particular design unit from a particular library. Such binding is not supported. Only
default Verilog module binding is supported.

The only Verilog construct that can be instantiated in a VHDL design is a Verilog
module. No other Verilog constructs are visible to VHDL code.

During elaboration, all components subject to default binding are regarded as design
units with the same name as the corresponding component name. During binding, XST
treats a component name as a VHDL design unit name and searches for it in the logical
library work. If XST finds a VHDL design unit, XST binds it. If XST cannot find a VHDL
design unit, it treats the component name as a Verilog module name, and searches for it
using a case sensitive search. XST searches for the Verilog module in the user-specified
list of unified logical libraries in the user-specified search order.

For more information, see:

Library Search Order (LSO) Files in Mixed Language Projects

XST selects the first Verilog module matching the name, and binds it.

Since libraries are unified, a Verilog cell by the same name as that of a VHDL design
unit cannot co-exist in the same logical library. A newly compiled cell/unit overrides a
previously compiled one.

Instantiating a VHDL Design Unit in a Verilog Design
This section includes:
• How to Instantiate a VHDL Entity
• Binding
• Limitations

How to Instantiate a VHDL Entity
To instantiate a VHDL entity:
1. Declare a module name with the same as name as the VHDL entity (optionally

followed by an architecture name) that you want to instantiate.
2. Perform a normal Verilog instantiation.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 551

Chapter 17: XST Mixed Language Support

The only VHDL construct that can be instantiated in a Verilog design is a VHDL entity.
No other VHDL constructs are visible to Verilog code. When you do this, XST uses the
entity/architecture pair as the Verilog/VHDL boundary.

Binding
XST performs the binding during elaboration.

XST first:

1. Searches for a Verilog module as follows:

• Uses the name of the instantiated module.

• Searches in the user-specified list of unified logical libraries.

• Searches in the user-specified order.

• Ignores any architecture name specified in the module instantiation.

2. Binds the name if found.

If XST cannot find a Verilog module, then XST:

1. Treats the name of the instantiated module as a VHDL entity.

2. Searches for the VHDL entity as follows:

• Performs a case sensitive search

• Searches in the user-specified list of unified logical libraries

• Searches in the user-specified order

Note This assumes that a VHDL design unit was stored with an extended identifier.

3. Selects the first VHDL entity matching the name.

4. Binds the entity.

For more information, see:

Library Search Order (LSO) Files in Mixed Language Projects

Limitations
XST has the following limitations when instantiating a VHDL design unit from a Verilog
module:

• Use explicit port association. Specify formal and effective port names in the port
map.

• All parameters are passed at instantiation, even if they are unchanged.

• The parameter override is named and not ordered. The parameter override occurs
through instantiation, and not through defparams.

Correct Use of Parameter Override Coding Example
ff #(.init(2’b01)) u1 (.sel(sel), .din(din), .dout(dout));

Incorrect Use of Parameter Override Coding Example
XST does not accept the following:

ff u1 (.sel(sel), .din(din), .dout(dout));
defparam u1.init = 2’b01;

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
552 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 17: XST Mixed Language Support

Port Mapping in Mixed Language Projects
Port Mapping in mixed language projects includes:
• VHDL in Verilog Port Mapping
• Verilog in VHDL Port Mapping
• VHDL in Mixed Language Port Mapping
• Verilog in Mixed Language Port Mapping

VHDL in Verilog Port Mapping
For VHDL entities instantiated in Verilog designs, XST supports the following port types:
• in
• out
• inout

XST does not support VHDL buffer and linkage ports.

Verilog in VHDL Port Mapping
For Verilog modules instantiated in VHDL designs, XST supports the following port
types:
• input
• output
• inout

XST does not support connection to bi-directional pass options in Verilog.

XST does not support unnamed Verilog ports for mixed language boundaries.

Use an equivalent component declaration for connecting to a case sensitive port in a
Verilog module. By default, XST assumes Verilog ports are in all lowercase.

VHDL in Mixed Language Port Mapping
XST supports the following VHDL data types for mixed language designs:
• bit
• bit_vector
• std_logic
• std_ulogic
• std_logic_vector
• std_ulogic_vector

Verilog in Mixed Language Port Mapping
XST supports the following Verilog data types for mixed language designs:
• wire
• reg

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 553

Chapter 17: XST Mixed Language Support

Generics Support in Mixed Language Projects
XST supports the following VHDL generic types and their Verilog equivalents for mixed
language designs:
• integer
• real
• string
• boolean

LSO Files in Mixed Language Projects
The Library Search Order (LSO) file specifies the search order that XST uses to link the
libraries used in VHDL and Verilog mixed language designs. By default, XST searches
the files specified in the project file in the order in which they appear in that file.

XST uses the default search order when:
• The DEFAULT_SEARCH_ORDER keyword is used in the LSO file, or
• The LSO file is not specified

Specifying the LSO File in ISE Design Suite
In ISE® Design Suite, the default name for the Library Search Order (LSO) file is
project_name.lso. If a project_name.lso file does not already exist, ISE Design
Suite automatically creates one.

If ISE Design Suite detects an existing project_name.lso file, this file is preserved and
used as is. In ISE Design Suite, the name of the project is the name of the top-level block.
In creating a default LSO file, ISE Design Suite places the DEFAULT_SEARCH_ORDER
keyword in the first line of the file.

Specifying the LSO File in the Command Line
Library Search Order (LSO) (-lso) specifies the Library Search Order (LSO) file when
running XST from the command line. If -lso is omitted, XST uses the default library
search order without using an LSO file.

LSO Rules
When processing a mixed language project, XST obeys the following search order rules,
depending on the contents of the Library Search Order (LSO) file:
• Library Search Order (LSO) Empty
• DEFAULT_SEARCH_ORDER Keyword Only
• DEFAULT_SEARCH_ORDER Keyword and List of Libraries
• List of Libraries Only
• DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name”

Library Search Order (LSO) Empty
When the Library Search Order (LSO) file is empty, XST:
• Issues a warning stating that the LSO file is empty
• Searches the files specified in the project file using the default library search order
• Updates the LSO file by adding the list of libraries in the order that they appear

in the project file.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
554 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 17: XST Mixed Language Support

DEFAULT_SEARCH_ORDER Keyword Only
When the Library Search Order (LSO) file contains only the DEFAULT_SEARCH_ORDER
keyword, XST:
• Searches the specified library files in the order in which they appear in the project file
• Updates the LSO file by:

– Removing the DEFAULT_SEARCH_ORDER keyword
– Adding the list of libraries to the LSO file in the order in which they appear

in the project file

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd verilog rtfllib f1.v vhdl vhlib2 f3.vhd LSO
file Created by ProjNav

and an LSO file, my_proj.lso, created by ISE® Design Suite, with the following
contents:

DEFAULT_SEARCH_ORDER

XST uses the following search order.

vhlib1 rtfllib vhlib2

After processing, the contents of my_proj.lso is:

vhlib1 rtfllib vhlib2

DEFAULT_SEARCH_ORDER Keyword and List of Libraries
When the Library Search Order (LSO) file contains the DEFAULT_SEARCH_ORDER
keyword, and a list of the libraries, XST:
• Searches the specified library files in the order in which they appear in the project file
• Ignores the list of library files in the LSO file
• Leaves the LSO file unchanged

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd verilog rtfllib f1.v vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso, created with the following contents:

rtfllib vhlib2 vhlib1 DEFAULT_SEARCH_ORDER

XST uses the following search order:

vhlib1 rtfllib vhlib2

After processing, the contents of my_proj.lso is:

rtfllib vhlib2 vhlib1 DEFAULT_SEARCH_ORDER

List of Libraries Only
When the Library Search Order (LSO) file contains a list of the libraries without the
DEFAULT_SEARCH_ORDER keyword, XST:
• Searches the library files in the order in which they appear in the LSO file
• Leaves the LSO file unchanged

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd verilog rtfllib f1.v vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso, created with the following contents:

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 555

Chapter 17: XST Mixed Language Support

rtfllib vhlib2 vhlib1

XST uses the following search order:

rtfllib vhlib2 vhlib1

After processing, the contents of my_proj.lso is:

rtfllib vhlib2 vhlib1

DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name
When the Library Search Order (LSO) file contains a library name that does not exist in
the project or INI file, and the LSO file does not contain the DEFAULT_SEARCH_ORDER
keyword, XST ignores the library.

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd verilog rtfllib f1.v vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso, created with the following contents:

personal_lib rtfllib vhlib2 vhlib1

XST uses the following search order:

rtfllib vhlib2 vhlib1

After processing, the contents of my_proj.lso is:

rtfllib vhlib2 vhlib1

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
556 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18

XST Log File
This chapter discusses the XST Log File, and includes:

• XST Log File Contents

• Reducing the Size of the XST Log File

• Macros in XST Log Files

• XST Log File Examples

XST FPGA Log File Contents
The XST FPGA log file contains:

• Copyright Statement

• Table of Contents

• Synthesis Options Summary

• HDL Compilation

• Design Hierarchy Analyzer

• HDL Analysis

• HDL Synthesis Report

• Advanced HDL Synthesis Report

• Low Level Synthesis

• Partition Report

• Final Report

Copyright Statement
The XST FPGA log file copyright statement contains:

• ISE® Design Suite release number

• Xilinx® notice of copyright

Table of Contents
The XST FPGA log file table of contents lists the major sections in the log file. These
headings are not linked. Use the Find function in your text editor.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 557

Chapter 18: XST Log File

Synthesis Options Summary
The XST FPGA log file Synthesis Options Summary contains information relating to:
• Source Parameters
• Target Parameters
• Source Options
• Target Options
• General Options
• Other Options

HDL Compilation
For information on Hardware Description Language (HDL) Compilation, see:

XST FPGA Log File HDL Analysis

Design Hierarchy Analyzer
For information on Design Hierarchy Analyzer, see:

XST FPGA Log File HDL Analysis

HDL Analysis
During Hardware Description Language (HDL) Compilation, Design Hierarchy
Analyzer, and HDL Analysis, XST:
• Parses and analyzes VHDL and Verilog files
• Recognizes the design hierarchy
• Gives the names of the libraries into which they are compiled

During this step, XST may report:
• Potential mismatches between synthesis and simulation results
• Potential multi-sources
• Other issues

HDL Synthesis Report
During Hardware Description Language (HDL) Synthesis, XST tries to recognize as
many basic macros as possible to create a technology-specific implementation. This is
done on a block by block basis. At the end of this step, XST issues the HDL Synthesis
Report.

For more information about the processing of each macro and the corresponding
messages issued during synthesis, see:

XST HDL Coding Techniques

Advanced HDL Synthesis Report
XST performs advanced macro recognition and inference. In this step, XST:
• Recognizes, for example, dynamic shift registers
• Implements pipelined multipliers
• Codes state machines

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
558 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

The Advanced HDL Synthesis Report contains a summary of recognized macros in
the overall design, sorted by macro type.

Low Level Synthesis
In the XST FPGA Log File Low Level Synthesis phase, XST reports the potential removal
of, for example:

• equivalent flip-flops

• register replication

For more information, see:

FPGA Optimization Report Section

Partition Report
If the design is partitioned, the XST FPGA log file Partition Report contains information
detailing the design partitions.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 559

Chapter 18: XST Log File

Final Report
The XST FPGA log file Final Report includes:

• Final Results, including

– RTL Top Level Output File Name (for example, stopwatch.ngr)

– Top Level Output File Name (for example, stopwatch)

– Output Format (for example, NGC)

– Optimization Goal (for example, Speed)

– Whether the Keep Hierarchy constraint is used (for example, No)

• Cell usage

Cell usage reports on, for example, the number and type of BELS, Clock Buffers,
and IO Buffers.

• Device Utilization Summary

The Device Utilization Summary estimates the number of slices, and gives, for
example, the number of flip-flops, IOBs, and BRAMS. The Device Utilization
Summary closely approximates the report produced by MAP.

• Partition Resource Summary

The Partition Resource Summary estimates the number of slices, and gives, for
example, the number of flip-flops, IOBs, and BRAMS for each partition. The
Partition Resource Summary closely resembles the report produced by MAP.

• Timing Report

At the end of synthesis, XST reports the timing information for the design. The
Timing Report shows the information for all four possible domains of a netlist:

– register to register

– input to register

– register to outpad

– inpad to outpad

For an example, see:

Timing Report section in XST FPGA Log File Example

For more information, see:

FPGA Optimization Report Section

• Encrypted Modules

If a design contains encrypted modules, XST hides the information about these
modules.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
560 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

Reducing the Size of the XST Log File
To reduce the size of the XST Log File:
• Use Message Filtering
• Use Quiet Mode
• Use Silent Mode
• Hide Specific Messages

Use Message Filtering
When running XST from ISE® Design Suite, use the Message Filtering wizard to filter
specific messages out of the log file.

For more information, see:

Using the Message Filters in the ISE Design Suite Help

Use Quiet Mode
Quiet Mode limits the number of messages printed to the computer screen (stdout).

To invoke Quiet Mode, set -intstyle to either of the following:
• ise

Formats messages for ISE® Design Suite
• xflow

Formats messages for XFLOW

Normally, XST prints the entire log to stdout. In Quiet Mode, XST does not print the
following portions of the log to stdout:
• Copyright Message
• Table of Contents
• Synthesis Options Summary
• The following portions of the Final Report

– Final Results header for CPLD devices
– Final Results section for FPGA devices
– A note in the Timing Report stating that the timing numbers are only a synthesis

estimate.
– Timing Detail
– CPU (XST runtime)
– Memory usage

The following sections are still available for FPGA devices:
• Device Utilization Summary
• Clock Information
• Timing Summary

Use Silent Mode
Silent Mode prevents any messages from being sent to the computer screen (stdout),
although XST continues to generate the entire log file.

To invoke Silent Mode, set the -intstyle command line option to:

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 561

Chapter 18: XST Log File

silent

Hide Specific Messages
This section includes:

• XIL_XST_HIDEMESSAGES Environment Variable Values

• Messages Hidden When Value is Set to hdl_level and hdl_and_low_levels

• Messages Hidden When Value is Set to low_level or hdl_and_low_levels

XIL_XST_HIDEMESSAGES Environment Variable Values
To hide specific messages at the HDL or Low Level Synthesis steps, set the
XIL_XST_HIDEMESSAGES environment variable to one of the values shown in the
following table.

Value Meaning
none (default) Maximum verbosity. All messages are printed

out.

hdl_level Reduce verbosity during VHDL or Verilog
Analysis and HDL Basic and Advanced
Synthesis.

low_level Reduce verbosity during Low-level Synthesis.

hdl_and_low_levels Reduce verbosity at all stages.

Messages HiddenWhen Value is Set to hdl_level and hdl_and_low_levels
The following messages are hidden when the value of the XIL_XST_HIDEMESSAGES
environment variable is set to hdl_level and hdl_and_low_levels:

• WARNING:HDLCompilers:38 - design.v line 5 Macro ’my_macro’
redefined

Note This message is issued by the Verilog compiler only.

• WARNING:Xst:916 - design.vhd line 5: Delay is ignored for
synthesis.

• WARNING:Xst:766 - design.vhd line 5: Generating a Black Box
for component comp.

• Instantiating component comp from Library lib.

• Set user-defined property "LOC = X1Y1" for instance inst in
unit block.

• Set user-defined property "RLOC = X1Y1" for instance inst in
unit block.

• Set user-defined property "INIT = 1" for instance inst in unit
block.

• Register reg1 equivalent to reg2 has been removed.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
562 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

Messages Hidden When Value is Set to low_level or hdl_and_low_levels
The following messages are hidden when the value of the XIL_XST_HIDEMESSAGES
environment variable is set to low_level or hdl_and_low_levels:

• WARNING:Xst:382 - Register reg1 is equivalent to reg2.
Register reg1 equivalent to reg2 has been removed.

• WARNING:Xst:1710 - FF/Latch reg (without init value) is
constant in block block.

• WARNING:Xst 1293 - FF/Latch reg is constant in block block.

• WARNING:Xst:1291 - FF/Latch reg is unconnected in block block.

• WARNING:Xst:1426 - The value init of the FF/Latch reg hinders
the constant cleaning in the block block. You could achieve
better results by setting this init to value.

Macros in XST Log Files
XST Log Files contain detailed information about the set of macros and associated
signals inferred by XST from the VHDL or Verilog source on a block by block basis.

Macro inference is done in two steps:

1. HDL Synthesis

XST recognizes as many simple macro blocks as possible, such as adders,
subtractors, and registers.

2. Advanced HDL Synthesis

XST does additional macro processing by improving the macros (for example,
pipelining of multipliers) recognized at the HDL synthesis step, or by creating
the new, more complex ones, such as dynamic shift registers. The Macro
Recognition report at the Advanced HDL Synthesis step is formatted the same as
the corresponding report at the HDL Synthesis step.

XST gives overall statistics of recognized macros twice:

• After the HDL Synthesis step

• After the Advanced HDL Synthesis step

XST no longer lists statistics of preserved macros in the final report.

XST Log File Examples
This section includes:

• Recognized Macros XST Log File Example

• Additional Macro Processing XST Log File Example

• XST FPGA Log File Example

• XST CPLD Log File Example

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 563

Chapter 18: XST Log File

Recognized Macros XST Log File Example
The following log file example shows the set of recognized macros on a block by block
basis, as well as the overall macro statistics after this step.

===
* HDL Synthesis *
===
...
Synthesizing Unit <decode>.

Related source file is "decode.vhd".
Found 16x10-bit ROM for signal <one_hot>.
Summary:

inferred 1 ROM(s).
Unit <decode> synthesized.

Synthesizing Unit <statmach>.
Related source file is "statmach.vhd".
Found finite state machine <FSM_0> for signal <current_state>.
--
States	6
Transitions	11
Inputs	1
Outputs	2
Clock	CLK (rising_edge)
Reset	RESET (positive)
Reset type	asynchronous
Reset State	clear
Power Up State	clear
Encoding	automatic
Implementation	LUT
--
Summary:

inferred 1 Finite State Machine(s).
Unit <statmach> synthesized.
...
==
HDL Synthesis Report

Macro Statistics
ROMs : 3
16x10-bit ROM : 1
16x7-bit ROM : 2
Counters : 2
4-bit up counter : 2

==
...

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
564 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

Additional Macro Processing XST Log File Example
The following XST FPGA log file example shows the additional macro processing done
during the Advanced HDL Synthesis step and the overall macro statistics after this step.

===
* Advanced HDL Synthesis *
===

Analyzing FSM <FSM_0> for best encoding.
Optimizing FSM <MACHINE/current_state/FSM_0> on signal <current_state[1:3]> with gray encoding.

State | Encoding

clear | 000
zero | 001
start | 011
counting | 010
stop | 110
stopped | 111

==
Advanced HDL Synthesis Report

Macro Statistics
FSMs : 1
ROMs : 3
16x10-bit ROM : 1
16x7-bit ROM : 2
Counters : 2
4-bit up counter : 2
Registers : 3
Flip-Flops/Latches : 3

==
...

XST FPGA Log File Example
The following is an example of an XST log file for FPGA synthesis. Release 10.1 - xst
K.31 (nt64)

Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

9.1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 565

Chapter 18: XST Log File

=============================

* Synthesis Options Summary *

=============================

---- Source Parameters

Input File Name : "stopwatch.prj"

Input Format : mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name : "stopwatch"

Output Format : NGC

Target Device : xc4vlx15-12-sf363

---- Source Options

Top Module Name : stopwatch

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No

FSM Style : lut

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES

Shift Register Extraction : YES

Logical Shifter Extraction : YES

XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : YES

Resource Sharing : YES

Asynchronous To Synchronous : NO

Use DSP Block : auto

Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 32

Number of Regional Clock Buffers : 16

Register Duplication : YES

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
566 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

Slice Packing : YES

Optimize Instantiated Primitives : NO

Use Clock Enable : Auto

Use Synchronous Set : Auto

Use Synchronous Reset : Auto

Pack IO Registers into IOBs : auto

Equivalent register Removal : YES

---- General Options

Optimization Goal : Speed

Optimization Effort : 1

Power Reduction : NO

Library Search Order : stopwatch.lso

Keep Hierarchy : NO

Netlist Hierarchy : as_optimized

RTL Output : Yes

Global Optimization : AllClockNets

Read Cores : YES

Write Timing Constraints : NO

Cross Clock Analysis : NO

Hierarchy Separator : /

Bus Delimiter : <>

Case Specifier : maintain

Slice Utilization Ratio : 100

BRAM Utilization Ratio : 100

DSP48 Utilization Ratio : 100

Verilog 2001 : YES

Auto BRAM Packing : NO

Slice Utilization Ratio Delta : 5

===

===

* HDL Compilation *

===

Compiling verilog file "smallcntr.v" in library work

Compiling verilog file "statmach.v" in library work

Module <smallcntr> compiled

Compiling verilog file "hex2led.v" in library work

Module <statmach> compiled

Compiling verilog file "decode.v" in library work

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 567

Chapter 18: XST Log File

Module <hex2led> compiled

Compiling verilog file "cnt60.v" in library work

Module <decode> compiled

Compiling verilog file "stopwatch.v" in library work

Module <cnt60> compiled

Module <stopwatch> compiled

No errors in compilation

Analysis of file <"stopwatch.prj"> succeeded.

Compiling vhdl file "C:/xst/watchver/tenths.vhd" in Library work.

Entity <tenths> compiled.

Entity <tenths> (Architecture <tenths_a>) compiled.

Compiling vhdl file "C:/xst/watchver/dcm1.vhd" in Library work.

Entity <dcm1> compiled.

Entity <dcm1> (Architecture <BEHAVIORAL>) compiled.

===

* Design Hierarchy Analysis *

===

Analyzing hierarchy for module <stopwatch> in library <work>.

Analyzing hierarchy for entity <dcm1> in library <work>
(architecture <BEHAVIORAL>).

Analyzing hierarchy for module <statmach> in library <work> with
parameters.

clear = "000001"

counting = "001000"

start = "000100"

stop = "010000"

stopped = "100000"

zero = "000010"

Analyzing hierarchy for module <decode> in library <work>.

Analyzing hierarchy for module <cnt60> in library <work>.

Analyzing hierarchy for module <hex2led> in library <work>.

Analyzing hierarchy for module <smallcntr> in library <work>.

===

* HDL Analysis *

===

Analyzing top module <stopwatch>.

Module <stopwatch> is correct for synthesis.

Analyzing Entity <dcm1> in library <work> (Architecture
<BEHAVIORAL>).

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
568 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

Set user-defined property "CAPACITANCE = DONT_CARE" for instance
<CLKIN_IBUFG_INST> in unit <dcm1>.

Set user-defined property "IBUF_DELAY_VALUE = 0" for instance
<CLKIN_IBUFG_INST> in unit <dcm1>.

Set user-defined property "IOSTANDARD = DEFAULT" for instance
<CLKIN_IBUFG_INST> in unit <dcm1>.

Set user-defined property "CLKDV_DIVIDE = 2.0000000000000000" for
instance <DCM_INST> in unit <dcm1>.

Set user-defined property "CLKFX_DIVIDE = 1" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "CLKFX_MULTIPLY = 4" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "CLKIN_DIVIDE_BY_2 = FALSE" for
instance <DCM_INST> in unit <dcm1>.

Set user-defined property "CLKIN_PERIOD = 20.0000000000000000"
for instance <DCM_INST> in unit <dcm1>.

Set user-defined property "CLKOUT_PHASE_SHIFT = NONE" for
instance <DCM_INST> in unit <dcm1>.

Set user-defined property "CLK_FEEDBACK = 1X" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "DESKEW_ADJUST = SYSTEM_SYNCHRONOUS"
for instance <DCM_INST> in unit <dcm1>.

Set user-defined property "DFS_FREQUENCY_MODE = LOW" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "DLL_FREQUENCY_MODE = LOW" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "DSS_MODE = NONE" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "DUTY_CYCLE_CORRECTION = TRUE" for
instance <DCM_INST> in unit <dcm1>.

Set user-defined property "FACTORY_JF = C080" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "PHASE_SHIFT = 0" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "SIM_MODE = SAFE" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "STARTUP_WAIT = TRUE" for instance
<DCM_INST> in unit <dcm1>.

Entity <dcm1> analyzed. Unit <dcm1> generated.

Analyzing module <statmach> in library <work>.

clear = 6’b000001

counting = 6’b001000

start = 6’b000100

stop = 6’b010000

stopped = 6’b100000

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 569

Chapter 18: XST Log File

zero = 6’b000010

Module <statmach> is correct for synthesis.

Analyzing module <decode> in library <work>.

Module <decode> is correct for synthesis.

Analyzing module <cnt60> in library <work>.

Module <cnt60> is correct for synthesis.

Analyzing module <smallcntr> in library <work>.

Module <smallcntr> is correct for synthesis.

Analyzing module <hex2led> in library <work>.

Module <hex2led> is correct for synthesis.

===

* HDL Synthesis *

===

Performing bidirectional port resolution...

Synthesizing Unit <statmach>.

Related source file is "statmach.v".

Found finite state machine <FSM_0> for signal <current_state>.

| States | 6 |

| Transitions | 15 |

| Inputs | 2 |

| Outputs | 2 |

| Clock | CLK (rising_edge) |

| Reset | RESET (positive) |

| Reset type | asynchronous |

| Reset State | 000001 |

| Encoding | automatic |

| Implementation | LUT |

Found 1-bit register for signal <CLKEN>.

Found 1-bit register for signal <RST>.

Summary:

inferred 1 Finite State Machine(s).

inferred 2 D-type flip-flop(s).

Unit <statmach> synthesized.

Synthesizing Unit <decode>.

Related source file is "decode.v".

Found 16x10-bit ROM for signal <ONE_HOT>.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
570 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

Summary:

inferred 1 ROM(s).

Unit <decode> synthesized.

Synthesizing Unit <hex2led>.

Related source file is "hex2led.v".

Found 16x7-bit ROM for signal <LED>.

Summary:

inferred 1 ROM(s).

Unit <hex2led> synthesized.

Synthesizing Unit <smallcntr>.

Related source file is "smallcntr.v".

Found 4-bit up counter for signal <QOUT>.

Summary:

inferred 1 Counter(s).

Unit <smallcntr> synthesized.

Synthesizing Unit <dcm1>.

Related source file is "C:/xst/watchver/dcm1.vhd".

Unit <dcm1> synthesized.

Synthesizing Unit <cnt60>.

Related source file is "cnt60.v".

Unit <cnt60> synthesized.

Synthesizing Unit <stopwatch>.

Related source file is "stopwatch.v".

Unit <stopwatch> synthesized.

=======================================

HDL Synthesis Report

Macro Statistics

ROMs : 3

16x10-bit ROM : 1

16x7-bit ROM : 2

Counters : 2

4-bit up counter : 2

Registers : 2

1-bit register : 2

===

===

* Advanced HDL Synthesis *

===

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 571

Chapter 18: XST Log File

Analyzing FSM <FSM_0> for best encoding.

Optimizing FSM <MACHINE/current_state/FSM> on signal
<current_state[1:3]> with sequential encoding.

State | Encoding

000001 | 000

000010 | 001

000100 | 010

001000 | 011

010000 | 100

100000 | 101

Loading device for application Rf_Device from file ’4vlx15.nph’
in environment C:\xilinx.

Executing edif2ngd -noa "tenths.edn" "tenths.ngo"

Release 10.1 - edif2ngd K.31 (nt64)

Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.

INFO:NgdBuild - Release 10.1 edif2ngd K.31 (nt64)

INFO:NgdBuild - Copyright (c) 1995-2008 Xilinx, Inc. All rights
reserved.

Writing module to "tenths.ngo"...

Reading core <tenths_c_counter_binary_v8_0_xst_1.ngc>.

Loading core <tenths_c_counter_binary_v8_0_xst_1> for timing and
area information for instance <BU2>.

Loading core <tenths> for timing and area information for
instance <xcounter>.

===

Advanced HDL Synthesis Report

Macro Statistics

ROMs : 3

16x10-bit ROM : 1

16x7-bit ROM : 2

Counters : 2

4-bit up counter : 2

Registers : 5

Flip-Flops : 5

===

===

* Low Level Synthesis *

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
572 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

===

Optimizing unit <stopwatch> ...

Mapping all equations...

Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block stopwatch,
actual ratio is 0.

Number of LUT replicated for flop-pair packing : 0

Final Macro Processing ...

===

Final Register Report

Macro Statistics

Registers : 13

Flip-Flops : 13

===

===

* Partition Report *

===

Partition Implementation Status

No Partitions were found in this design.

===

* Final Report *

===

Final Results

RTL Top Level Output File Name : stopwatch.ngr

Top Level Output File Name : stopwatch

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

IOs : 27

Cell Usage :

BELS : 70

GND : 2

INV : 1

LUT1 : 3

LUT2 : 1

LUT2_L : 1

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 573

Chapter 18: XST Log File

LUT3 : 8

LUT3_D : 1

LUT3_L : 1

LUT4 : 37

LUT4_D : 1

LUT4_L : 4

MUXCY : 3

MUXF5 : 2

VCC : 1

XORCY : 4

FlipFlops/Latches : 17

FDC : 13

FDCE : 4

Clock Buffers : 1

BUFG : 1

IO Buffers : 27

IBUF : 2

IBUFG : 1

OBUF : 24

DCM_ADVs : 1

DCM_ADV : 1

===

Device utilization summary:

Selected Device : 4vlx15sf363-12

Number of Slices: 32 out of 6144 0%

Number of Slice Flip Flops: 17 out of 12288 0%

Number of 4 input LUTs: 58 out of 12288 0%

Number of IOs: 27

Number of bonded IOBs: 27 out of 240 11%

Number of GCLKs: 1 out of 32 3%

Number of DCM_ADVs: 1 out of 4 25%

Partition Resource Summary:

No Partitions were found in this design.

===

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
574 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT

GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

-----------------------------------+-----------

Clock Signal | Clock buffer (FF name) | Load |

-----------------------------------+-----------

CLK | Inst_dcm1/DCM_INST:CLK0| 17 |

-----------------------------------+-----------

Asynchronous Control Signals Information:

--

-----------------------------------+---------------

Control Signal | Buffer (FF name) | Load |

-----------------------------------+---------------

MACHINE/RST(MACHINE/RST:Q) | NONE(sixty/lsbcount/QOUT_1)| 8 |

RESET | IBUF | 5 |

sixty/msbclr(sixty/msbclr_f5:O) | NONE(sixty/msbcount/QOUT_0)|
4 |

-----------------------------------+---------------

Timing Summary:

Speed Grade: -12

Minimum period: 2.282ns (Maximum Frequency: 438.212MHz)

Minimum input arrival time before clock: 1.655ns

Maximum output required time after clock: 4.617ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

===

Timing constraint: Default period analysis for Clock ’CLK’

Clock period: 2.282ns (frequency: 438.212MHz)

Total number of paths / destination ports: 134 / 21

Delay: 2.282ns (Levels of Logic = 4)

Source: xcounter/BU2/U0/q_i_1 (FF)

Destination: sixty/msbcount/QOUT_1 (FF)

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 575

Chapter 18: XST Log File

Source Clock: CLK rising

Destination Clock: CLK rising

Data Path: xcounter/BU2/U0/q_i_1 to sixty/msbcount/QOUT_1

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-- ------------

FDCE:C->Q 12 0.272 0.672 U0/q_i_1 (q(1))

LUT4:I0->O 11 0.147 0.492 U0/thresh0_i_cmp_eq00001 (thresh0)

end scope: ’BU2’

end scope: ’xcounter’

LUT4_D:I3->O 1 0.147 0.388 sixty/msbce (sixty/msbce)

LUT3:I2->O 1 0.147 0.000 sixty/msbcount/QOUT_1_rstpot
(sixty/msbcount/QOUT_1_rstpot)

FDC:D 0.017 sixty/msbcount/QOUT_1

--

Total 2.282ns (0.730ns logic, 1.552ns route)

(32.0% logic, 68.0% route)

===

Timing constraint: Default OFFSET IN BEFORE for Clock ’CLK’

Total number of paths / destination ports: 4 / 3

Offset: 1.655ns (Levels of Logic = 3)

Source: STRTSTOP (PAD)

Destination: MACHINE/current_state_FSM_FFd3 (FF)

Destination Clock: CLK rising

Data Path: STRTSTOP to MACHINE/current_state_FSM_FFd3

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-- ------------

IBUF:I->O 4 0.754 0.446 STRTSTOP_IBUF (STRTSTOP_IBUF)

LUT4:I2->O 1 0.147 0.000 MACHINE/current_state_FSM_FFd3-In_F
(N48)

MUXF5:I0->O 1 0.291 0.000 MACHINE/current_state_FSM_FFd3-In
(MACHINE/current_state_FSM_FFd3-In)

FDC:D 0.017 MACHINE/current_state_FSM_FFd3

--

Total 1.655ns (1.209ns logic, 0.446ns route)

(73.0% logic, 27.0% route)

===

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
576 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

Timing constraint: Default OFFSET OUT AFTER for Clock ’CLK’

Total number of paths / destination ports: 96 / 24

Offset: 4.617ns (Levels of Logic = 2)

Source: sixty/lsbcount/QOUT_1 (FF)

Destination: ONESOUT<6> (PAD)

Source Clock: CLK rising

Data Path: sixty/lsbcount/QOUT_1 to ONESOUT<6>

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-- ------------

FDC:C->Q 13 0.272 0.677 sixty/lsbcount/QOUT_1
(sixty/lsbcount/QOUT_1)

LUT4:I0->O 1 0.147 0.266 lsbled/Mrom_LED21 (lsbled/Mrom_LED2)

OBUF:I->O 3.255 ONESOUT_2_OBUF (ONESOUT<2>)

--

Total 4.617ns (3.674ns logic, 0.943ns route)

(79.6% logic, 20.4% route)

===

Total REAL time to Xst completion: 20.00 secs

Total CPU time to Xst completion: 19.53 secs

-->

Total memory usage is 333688 kilobytes

Number of errors : 0 (0 filtered)

)Number of warnings : 0 (0 filtered

Number of infos : 1 (0 filtered)

XST CPLD Log File Example
The following is an example of an XST log file for CPLD
synthesis.

Release 10.1 - xst K.31 (nt64)

Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 577

Chapter 18: XST Log File

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

==

* Synthesis Options Summary *

==

---- Source Parameters

Input File Name : "stopwatch.prj"

Input Format : mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name : "stopwatch"

Output Format : NGC

Target Device : CoolRunner2 CPLDs

---- Source Options

Top Module Name : stopwatch

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No

Mux Extraction : YES

Resource Sharing : YES

---- Target Options

Add IO Buffers : YES

MACRO Preserve : YES

XOR Preserve : YES

Equivalent register Removal : YES

---- General Options

Optimization Goal : Speed

Optimization Effort : 1

Library Search Order : stopwatch.lso

Keep Hierarchy : YES

Netlist Hierarchy : as_optimized

RTL Output : Yes

Hierarchy Separator : /

Bus Delimiter : <>

Case Specifier : maintain

Verilog 2001 : YES

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
578 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

---- Other Options

Clock Enable : YES

wysiwyg : NO

==

==

* HDL Compilation *

==

Compiling verilog file "smallcntr.v" in library work

Compiling verilog file "tenths.v" in library work

Module <smallcntr> compiled

Compiling verilog file "statmach.v" in library work

Module <tenths> compiled

Compiling verilog file "hex2led.v" in library work

Module <statmach> compiled

Compiling verilog file "decode.v" in library work

Module <hex2led> compiled

Compiling verilog file "cnt60.v" in library work

Module <decode> compiled

Compiling verilog file "stopwatch.v" in library work

Module <cnt60> compiled

Module <stopwatch> compiled

No errors in compilation

Analysis of file <"stopwatch.prj"> succeeded.

==

* Design Hierarchy Analysis *

==

Analyzing hierarchy for module <stopwatch> in library <work>.

Analyzing hierarchy for module <statmach> in library <work> with
parameters.

clear = "000001"

counting = "001000"

start = "000100"

stop = "010000"

stopped = "100000"

zero = "000010"

Analyzing hierarchy for module <tenths> in library <work>.

Analyzing hierarchy for module <decode> in library <work>.

Analyzing hierarchy for module <cnt60> in library <work>.

Analyzing hierarchy for module <hex2led> in library <work>.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 579

Chapter 18: XST Log File

Analyzing hierarchy for module <smallcntr> in library <work>.

==

* HDL Analysis *

==

Analyzing top module <stopwatch>.

Module <stopwatch> is correct for synthesis.

Analyzing module <statmach> in library <work>.

clear = 6’b000001

counting = 6’b001000

start = 6’b000100

stop = 6’b010000

stopped = 6’b100000

zero = 6’b000010

Module <statmach> is correct for synthesis.

Analyzing module <tenths> in library <work>.

Module <tenths> is correct for synthesis.

Analyzing module <decode> in library <work>.

Module <decode> is correct for synthesis.

Analyzing module <cnt60> in library <work>.

Module <cnt60> is correct for synthesis.

Analyzing module <smallcntr> in library <work>.

Module <smallcntr> is correct for synthesis.

Analyzing module <hex2led> in library <work>.

Module <hex2led> is correct for synthesis.

==

* HDL Synthesis *

==

Performing bidirectional port resolution...

Synthesizing Unit <statmach>.

Related source file is "statmach.v".

Found finite state machine <FSM_0> for signal <current_state>.

| States | 6 |

| Transitions | 15 |

| Inputs | 2 |

| Outputs | 2 |

| Clock | CLK (rising_edge) |

| Reset | RESET (positive) |

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
580 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

| Reset type | asynchronous |

| Reset State | 000001 |

| Encoding | automatic |

| Implementation | automatic |

Found 1-bit register for signal <CLKEN>.

Found 1-bit register for signal <RST>.

Summary:

inferred 1 Finite State Machine(s).

inferred 2 D-type flip-flop(s).

Unit <statmach> synthesized.

Synthesizing Unit <tenths>.

Related source file is "tenths.v".

Found 4-bit up counter for signal <Q>.

Summary:

inferred 1 Counter(s).

Unit <tenths> synthesized.

Synthesizing Unit <decode>.

Related source file is "decode.v".

Found 16x10-bit ROM for signal <ONE_HOT>.

Summary:

inferred 1 ROM(s).

.Unit <decode> synthesized

Synthesizing Unit <hex2led>.

Related source file is "hex2led.v".

Found 16x7-bit ROM for signal <LED>.

Summary:

inferred 1 ROM(s).

Unit <hex2led> synthesized.

Synthesizing Unit <smallcntr>.

Related source file is "smallcntr.v".

Found 4-bit up counter for signal <QOUT>.

Summary:

inferred 1 Counter(s).

Unit <smallcntr> synthesized.

Synthesizing Unit <cnt60>.

Related source file is "cnt60.v".

Unit <cnt60> synthesized.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 581

Chapter 18: XST Log File

Synthesizing Unit <stopwatch>.

Related source file is "stopwatch.v".

Found 1-bit register for signal <strtstopinv>.

Summary:

inferred 1 D-type flip-flop(s).

Unit <stopwatch> synthesized.

==

HDL Synthesis Report

Macro Statistics

ROMs : 3

16x10-bit ROM : 1

16x7-bit ROM : 2

Counters : 3

4-bit up counter : 3

Registers : 3

1-bit register : 3

==

==

* Advanced HDL Synthesis *

==

Analyzing FSM <FSM_0> for best encoding.

Optimizing FSM <MACHINE/current_state/FSM> on signal
<current_state[1:3]> with sequential encoding.

State | Encoding

000001 | 000

000010 | 001

000100 | 010

001000 | 011

010000 | 100

100000 | 101

==

Advanced HDL Synthesis Report

Macro Statistics

ROMs : 3

16x10-bit ROM : 1

16x7-bit ROM : 2

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
582 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 18: XST Log File

Counters : 3

4-bit up counter : 3

Registers : 6

Flip-Flops : 6

==

==

* Low Level Synthesis *

==

Optimizing unit <stopwatch> ...

Optimizing unit <statmach> ...

Optimizing unit <decode> ...

Optimizing unit <hex2led> ...

Optimizing unit <tenths> ...

Optimizing unit <smallcntr> ...

Optimizing unit <cnt60> ...

==

* Partition Report *

==

Partition Implementation Status

No Partitions were found in this design.

==

* Final Report *

==

Final Results

RTL Top Level Output File Name : stopwatch.ngr

Top Level Output File Name : stopwatch

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : YES

Target Technology : CoolRunner2 CPLDs

Macro Preserve : YES

XOR Preserve : YES

Clock Enable : YES

wysiwyg : NO

Design Statistics

IOs : 28

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 583

Chapter 18: XST Log File

Cell Usage :

BELS : 413

AND2 : 120

AND3 : 10

AND4 : 6

INV : 174

OR2 : 93

OR3 : 1

XOR2 : 9

FlipFlops/Latches : 18

FD : 1

FDC : 5

FDCE : 12

IO Buffers : 28

IBUF : 4

OBUF : 24

==

Total REAL time to Xst completion: 7.00 secs

Total CPU time to Xst completion: 6.83 secs

-->

Total memory usage is 196636 kilobytes

Number of errors : 0 (0 filtered)

Number of warnings : 0 (0 filtered)

Number of infos : 0 (0 filtered)

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
584 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 19

XST Naming Conventions
This chapter discusses XST Naming Conventions, and includes:

• XST Net Naming Conventions

• XST Instance Naming Conventions

• XST Name Generation Control

XST Net Naming Conventions
The following XST net naming conventions are listed in order of naming priority:

1. Maintain external pin names.

2. Keep hierarchy in signal names, using forward slashes (/) or underscores (_) as
hierarchy designators.

3. Maintain output signal names of registers, including state bits. Use the hierarchical
name from the level where the register was inferred.

4. Ensure that output signals of clock buffers get _clockbuffertype (such as _BUFGP
or _IBUFG) follow the clock signal name.

5. Maintain input nets to registers and tristates names.

6. Maintain names of signals connected to primitives and black boxes.

7. Name output net names of IBUFs using the form net_name_IBUF. For example, for
an IBUF with an output net name of DIN, the output IBUF net name is DIN_IBUF.

8. Name input net names to OBUFs using the form net_name_OBUF. For example,
for an OBUF with an input net name of DOUT, the input OBUF net name is
DOUT_OBUF.

9. Base names for internal (combinatorial) nets on user HDL signal names where
possible.

XST Instance Naming Conventions
Xilinx® highly recommends that you use the following instance naming conventions.

To use instance naming conventions from previous releases of ISE® Design Suite, insert
the following command line option in the XST command line:

-old_instance_names 1

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 585

Chapter 19: XST Naming Conventions

The following rules are listed in order of naming priority:

1. Keep hierarchy in instance names, using forward slashes (/) or underscores (_) as
hierarchy designators.

When instance names are generated from VHDL or Verilog generate statements,
labels from generate statements are used in composition of instance names.

For example, for the following VHDL generate statement:

i1_loop: for i in 1 to 10 generate
inst_lut:LUT2 generic map (INIT => "00")

XST generates the following instance names for LUT2:

i1_loop[1].inst_lut
i1_loop[2].inst_lut
i1_loop[9].inst_lut
...
i1_loop[10].inst_lut

2. Name register instances, including state bits, for the output signal.

3. Name clock buffer instances _clockbuffertype (such as _BUFGP or _IBUFG) after
the output signal.

4. Maintain instantiation instance names of black boxes.

5. Maintain instantiation instance names of library primitives.

6. Name input and output buffers using the form _IBUF or _OBUF after the pad name.

7. Name Output instance names of IBUFs using the form instance_name_IBUF.

8. Name input instance names to OBUFs using the form instance_name_OBUF.

XST Name Generation Control
The following constraints control how names are written.

• Hierarchy Separator (-hierarchy_separator)

• Bus Delimiter (-bus_delimiter)

• Case (-case)

• Duplication Suffix (-duplication_suffix)

Define in ISE Design Suite in:

• Synthesis Properties, OR

• The command line

For more information, see:

XST Design Constraints

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
586 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 20

XST Command Line Mode
This chapter discusses XST Command Line Mode, and includes:

• About XST Command Line Mode
• Launching XST in Command Line Mode Using the XST Shell
• Launching XST in Command Line Mode Using a Script File
• Running XST in Script Mode (VHDL)
• Running XST in Script Mode (Verilog)
• Running XST in Script Mode (Mixed Language)
• Setting Up an XST Script Using the Run Command
• Setting Up an XST Script Using the Set Command
• Setting Up an XST Script Using the Elaborate Command
• Synthesizing VHDL Designs Using Command Line Mode
• Synthesizing Verilog Designs Using Command Line Mode
• Synthesizing Mixed Designs Using Command Line Mode

About XST Command Line Mode
This section discusses About XST Command Line Mode, and includes:
• Running XST in Command Line Mode
• XST File Types in Command Line Mode
• Temporary Files in Command Line Mode
• Names With Spaces in Command Line Mode

Running XST in Command Line Mode
To run XST in command line mode:
• On a workstation, run xst
• On a PC, run xst.exe

XST File Types in Command Line Mode
XST generates the following files types in command line mode:
• Design output file, NGC (.ngc)

This file is generated in the current output directory (see the -ofn option).
• Register Transfer Level (RTL) netlist for RTL and Technology Viewers (.ngr)
• Synthesis log file (.srp)
• Temporary files

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 587

Chapter 20: XST Command Line Mode

Temporary Files in Command Line Mode
Temporary files are generated in the XST temp directory in command line mode. By
default, the XST temp directory is:
• Workstations

/tmp

• Windows
The directory specified by either the TEMP or TMP environment variable

Use set -tmpdir <directory> to change the XST temp directory.

VHDL or Verilog compilation files are generated in the temp directory. The default temp
directory is the xst subdirectory of the current directory.

Tip Xilinx® recommends that you clean the XST temp directory regularly. The temp
directory contains the files resulting from the compilation of all VHDL and Verilog files
during all XST sessions. Eventually, the number of files stored in the temp directory may
severely impact CPU performance. XST does not automatically clean the temp directory.

Names With Spaces in Command Line Mode
XST supports file and directory names with spaces in command line mode.

Enclose file or directory names containing spaces in double quotes:

"C:\my project"

Enclose multiple directories in braces:

-vlgincdir {"C:\my project" C:\temp}

Launching XST in Command Line Mode Using the XST Shell
Type xst to enter directly into an XST shell. Enter your commands and execute them.
To run synthesis, specify a complete command with all required options. XST does not
accept a mode where you can first enter set option_1, then set option_2, and then enter
run.

Since all options are set at the same time, Xilinx® recommends that you use a script file.

Launching XST in Command Line Mode Using a Script File
Store your commands in a separate script file and run them all at once. To execute your
script file, run the following workstation or PC command:

xst -ifn in_file_name -ofn out_file_name -intstyle {silent|ise|xflow}

The -ofn option is not mandatory. If you omit it, XST automatically generates a log file
with the file extension .srp, and all messages display on the screen. Use the following to
limit the number of messages printed to the screen:
• The -intstyle silent option
• The XIL_XST_HIDEMESSAGES environment variable
• The message filter feature in ISE® Design Suite

For more information, see:

Reducing the Size of the XST Log File

For example, assume that the following text is contained in a file foo.scr:

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
588 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 20: XST Command Line Mode

run -ifn tt1.prj -top tt1 -ifmt MIXED -opt_mode SPEED -opt_level 1 -ofn tt1.ngc -p
<parttype>

This script file can be executed under XST using the following command:

xst -ifn foo.scr

You can also generate a log file with the following command:

xst -ifn foo.scr -ofn foo.log

A script file can be run either using xst -ifn script name, or executed under the XST
prompt, by using the script script_name command.

script foo.scr

If you make a mistake in an XST command option, or its value, XST issues an error
message and stops execution. For example, if in the previous script example VHDL is
incorrectly spelled (“VHDLL”), XST gives the following error message:

--> ERROR:Xst:1361 - Syntax error in command run for option
"-ifmt" : parameter "VHDLL" is not allowed.

If you created your project using ISE Design Suite, and have run XST at least once from
ISE Design Suite, you can switch to XST command line mode and use the script and
project files that were created by ISE Design Suite.

To run XST from the command line, run the following command from project directory:

xst -ifn <top_level_block>.xst -ofn <top_level_block>.syr

Setting Up an XST Script Using the Run Command
This section discusses Setting Up an XST Script Using the Run Command, and includes:

• About the Run Command

• Writing a Script File

• XST Specific Non-Timing Related Options

• Online Help

• Supported Families

• Commands for a Specific Device

• Run Command Options and Values (Virtex-5 Devices)

About the Run Command
The run command:

• Is the main synthesis command.

• Allows you to run synthesis in its entirety, beginning with the parsing of the
Hardware Description Language (HDL) files, and ending with the generation
of the final netlist.

• Can be used only once per script file.

• Begins with a keyword run, which is followed by a set of options and its values:

run option_1 value option_2 value ...

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 589

Chapter 20: XST Command Line Mode

Writing a Script File
Observe the following rules when writing a script file:
• Place each option-value pair on a separate line.
• Use the pound (#) character to comment out options, or place additional comments

in the script file.

run
option_1 value
option_2 value
option_3 value

• The first line contains only the run command without any options.
• There are no blank lines in the middle of the command.
• Each option name begins with dash. For example: -ifn, -ifmt, -ofn.
• Each option has one value. There are no options without a value.
• The value for a given option can be one of the following:

– Predefined by XST (for instance, yes or no)
– Any string (for instance, a file name or a name of the top level entity). Options

such as -vlgincdir accept several directories as values. Separate the directories
by spaces, and enclose them in braces ({}):

-vlgincdir {c:\vlg1 c:\vlg2}

For more information, see Names With Spaces in Command Line Mode.
– An integer

XST Specific Non-Timing Related Options
The following topics summarize XST specific non-timing related options, including
run command options and their values:
• XST Specific Non-Timing Options
• XST Specific Non-Timing Options: XST Command Line Only

Online Help
XST provides online Help from the command line. The following information is
available by typing help at the command line. The XST help function provides a list of
supported families, available commands, options and their values for each supported
device family.
To see a detailed explanation of an XST command, use the following syntax.

help -arch family_name -command command_name

where:
• family_name is a list of supported Xilinx® families in the current version of XST
• command_name is one of the following XST commands:

– run
– set
– elaborate
– time

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
590 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 20: XST Command Line Mode

Supported Families
To see a list of supported families, type help at the command line prompt with no
argument. XST issues the following message.

--> help
ERROR:Xst:1356 - Help : Missing "-arch <family>".
Please specify what family you want to target
available families:
acr2
aspartan3
aspartan3a
aspartan3adsp
aspartan3e
avirtex4
fpgacore
qrvirtex4
qvirtex4
spartan3
spartan3a
spartan3adsp
spartan3e
virtex4
virtex5
xa9500xl
xbr
xc9500
xc9500xl
xpla3

Commands for a Specific Device
To see a list of commands for a specific device, type the following at the command
line prompt with no argument.

help -arch family_name

For example:

help -arch virtex

Run Command Options and Values (Virtex-5 Devices)
Use the following command to see a list of options and values for the run command for
Virtex®-5 devices.

--> help -arch virtex5 -command run

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 591

Chapter 20: XST Command Line Mode

This command gives the following output:

-mult_style : Multiplier Style
block / lut / auto / pipe_lut

-bufg : Maximum Global Buffers
*

-bufgce : BUFGCE Extraction
YES / NO

-decoder_extract : Decoder Extraction
YES / NO

....

-ifn : *
-ifmt : Mixed / VHDL / Verilog
-ofn : *
-ofmt : NGC / NCD
-p : *
-ent : *
-top : *
-opt_mode : AREA / SPEED
-opt_level : 1 / 2
-keep_hierarchy : YES / NO
-vlgincdir : *
-verilog2001 : YES / NO
-vlgcase : Full / Parallel / Full-Parallel
....

Setting Up an XST Script Using the Set Command
XST recognizes the set command.

For more information, see:

XST Design Constraints

Set Command Options
Option Description Values
-tmpdir Location of all temporary files

generated by XST during a session
Any valid path to a directory

-xsthdpdir Work Directory — location of all
files resulting from VHDL or Verilog
compilation

Any valid path to a directory

-xsthdpini HDL Library Mapping File (.INI File) file_name

Setting Up an XST Script Using the Elaborate Command
Use the elaborate command to:

• Pre-compile VHDL and Verilog files in a specific library, or
• Verify Verilog files without synthesizing the design

Since compilation is included in the run, the elaborate command is optional.

For more information, see:

XST Design Constraints

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
592 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 20: XST Command Line Mode

Elaborate Command Options
Option Description Values
-ifn Project File file_name

-ifmt Format vhdl, verilog, mixed

-lso Library Search Order file_name.lso

-work_lib Work Library for Compilation — library
where the top level block was compiled

name, work

-verilog2001 Verilog-2001 yes, no

-vlgpath Verilog Search Paths Any valid path to directories separated by spaces, and
enclosed in double quotes ("...")

-vlgincdir Verilog Include Directories Any valid path to directories separated by spaces, and
enclosed in braces ({...})

Running XST in Script Mode (VHDL)
To run XST in script mode in VHDL:

1. Open a new file named stopwatch.xst in the current directory.

2. Put the previously executed XST shell command into this file and save it.

run -ifn watchvhd.prj -ifmt mixed -top stopwatch -ofn watchvhd.ngc
-ofmt NGC -p xc5vfx30t-2-ff324 -opt_mode Speed -opt_level 1

3. From the tcsh or other shell, enter the following command to begin synthesis:

xst -ifn stopwatch.xst

Files Created During Run (VHDL)
During this run, XST creates the following files.

• watchvhd.ngc

An NGC file ready for the implementation tools

• xst.srp

The XST log file

Saving XST Messages in a Different Log File (VHDL)
To save XST messages in a different log file, run the following command:

xst -ifn stopwatch.xst -ofn <filename>.log

Following is an example using watchvhd.log:

xst -ifn stopwatch.xst -ofn watchvhd.log

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 593

Chapter 20: XST Command Line Mode

For this example, stopwatch.xst appears as follows:

run
-ifn watchvhd.prj
-ifmt mixed
-top stopwatch
-ofn watchvhd.ngc
-ofmt NGC
-p xc5vfx30t-2-ff324
-opt_mode Speed
-opt_level 1

Improving Readability (VHDL)
Observe the following rules to improve the readability of the stopwatch.xst file,
especially if you use many options to run synthesis:

• Each option with its value is on a separate line.

• The first line contains only the run command without any options.

• There are no blank lines in the middle of the command.

• Each line except the first begins with a dash.

Leading Spaces (VHDL)
An error occurs if a leading space is entered in the value field.

ISE® Design Suite automatically strips leading spaces from a process value. Accordingly,
the .xst file written by ISE Design Suite is not affected by leading spaces.

If you hand-edit the .xst file and run XST from the command line, manually delete
any leading spaces.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
594 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 20: XST Command Line Mode

Running XST in Script Mode (Verilog)
This section discusses Running XST in Script Mode (Verilog), and includes:
• How to Run XST in Script Mode (Verilog)
• Files Created During Run (Verilog)
• Saving XST Messages in a Different Log File (Verilog)
• Improving Readability (Verilog)

How to Run XST in Script Mode (Verilog)
To run XST in script mode:
1. Open a new file called design.xst in the current directory. Put the previously

executed XST shell command into this file and save it.

run

-ifn watchver.prj

-ifmt mixed

-ofn watchver.ngc

-ofmt NGC

-p xc5vfx30t-2-ff324

-opt_mode Speed

-opt_level 1

2. From the tcsh or other shell, enter the following command to begin synthesis.

xst -ifn design.xst

For the previous command example, the design.xst file should look like the following:

run
-ifn watchver.prj
-ifmt mixed
-top stopwatch
-ofn watchver.ngc
-ofmt NGC
-p xc5vfx30t-2-ff324
-opt_mode Speed
-opt_level 1

Files Created During Run (Verilog)
During this run, XST creates the following files.
• watchvhd.ngc

An NGC file ready for the implementation tools
• design.srp

The XST script log file

Saving XST Messages in a Different Log File (Verilog)
To save XST messages in a different log file (for example, watchver.log), run:

xst -ifn design.xst -ofn watchver.log

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 595

Chapter 20: XST Command Line Mode

Improving Readability (Verilog)
To improve the readability of the design.xst file, especially if you use many options
to run synthesis, place each option with its value on a separate line. Observe the
following rules:

• The first line contains only the run command without any options.

• There are no blank lines in the middle of the command.

• Each line (except the first one) begins with a dash (-).

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
596 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 20: XST Command Line Mode

Running XST in Script Mode (Mixed Language)
This section discusses Running XST in Script Mode (Mixed Language), and includes:
• How to Run XST in Script Mode (Mixed Language)
• Files Created During Run
• Saving XST Messages in a Different Log File (Mixed Language)
• Improving Readability (Mixed Language)

How to Run XST in Script Mode (Mixed Language)
To run XST in script mode:
1. Open a new file called stopwatch.xst in the current directory. Put the previously

executed XST shell command into this file and save it.

run

-ifn watchver.prj

-ifmt mixed

-top stopwatch

-ofn watchver.ngc

-ofmt NGC

-ofn watchver.ngc

-ofmt NGC

-p xc5vfx30t-2-ff324

-opt_mode Speed

-opt_level 1

2. From the tcsh or other shell, enter the following command to begin synthesis.

xst -ifn stopwatch.xst

For the previous command example, the stopwatch.xst file should look like:

run
-ifn watchver.prj
-ifmt mixed
-ofn watchver.ngc
-ofmt NGC
-p xc5vfx30t-2-ff324
-opt_mode Speed
-opt_level 1

Files Created During Run (Mixed Language)
During this run, XST creates the following files:
• watchver.ngc

An NGC file ready for the implementation tools
• xst.srp

The XST script log file

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 597

Chapter 20: XST Command Line Mode

Saving XST Messages in a Different Log File (Mixed Language)
To save XST messages to a different log file (for example, watchver.log) run:

xst -ifn stopwatch.xst -ofn <filename>.log

Following is an example using watchver.log:

xst -ifn stopwatch.xst -ofn watchver.log

Improving Readability (Mixed Language)
To improve the readability of the stopwatch.xst file, especially if you use many
options to run synthesis, place each option with its value on a separate line. Observe
the following rules:

• The first line contains only the run command without any options.

• There are no blank lines in the middle of the command.

• Each line (except the first one) begins with a dash.

Synthesizing VHDL Designs Using Command Line Mode
This section discusses Synthesizing VHDL Designs Using Command Line Mode, and
includes:

• VHDL Design Files and Entities

• Example Using Command Line Mode

• Synthesizing the Design

• Library Names

• XST File Order Warning

The following coding example shows how to synthesize a hierarchical VHDL design for
a Virtex® device using command line mode.

VHDL Design Files and Entities
The example uses a VHDL design called watchvhd. The files for watchvhd are
located in the ISEexamples\watchvhd directory of the ISE® Design Suite installation
directory.

This design contains seven entities:

• stopwatch

• statmach

• tenths (a CORE Generator™ software core)

• decode

• smallcntr

• cnt60

• hex2led

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
598 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 20: XST Command Line Mode

Example Using Command Line Mode
Following is an example of how to synthesize a VHDL design using command line mode.

1. Create a new directory named vhdl_m.

2. Copy the following files from the ISEexamples\watchvhd directory of the ISE
Design Suite installation directory to the newly created vhdl_m directory.

• stopwatch.vhd

• statmach.vhd

• decode.vhd

• cnt60.vhd

• smallcntr.vhd

• tenths.vhd

• hex2led.vhd

3. To synthesize the design, which is now represented by seven VHDL files, create
a project.

Synthesizing the Design
XST supports mixed VHDL and Verilog projects. Xilinx® recommends that you use the
new project format, whether or not it is a real mixed language project. This example uses
the new project format. To create a project file containing only VHDL files, place a list of
VHDL files preceded by keyword VHDL in a separate file. The order of the files is not
important. XST can recognize the hierarchy, and compile VHDL files in the correct order.

For the example, perform the following steps:

1. Open a new file called watchvhd.prj

2. Enter the names of the VHDL files in any order into this file and save the file:

vhdl work statmach.vhd
vhdl work decode.vhd
vhdl work stopwatch.vhd
vhdl work cnt60.vhd
vhdl work smallcntr.vhd
vhdl work tenths.vhd
vhdl work hex2led.vhd

3. To synthesize the design, execute the following command from the XST shell or
the script file:

run -ifn watchvhd.prj -ifmt mixed -top stopwatch -ofn
watchvhd.ngc -ofmt NGC -p xc5vfx30t-2-ff324 -opt_mode Speed
-opt_level 1

You must specify a top-level design block with the -top command line option.

To synthesize just hex2led and check its performance independently of the other blocks,
you can specify the top-level entity to synthesize on the command line, using the -top
option.

run -ifn watchvhd.prj -ifmt mixed -ofn watchvhd.ngc -ofmt NGC -p
xc5vfx30t-2-ff324 -opt_mode Speed -opt_level 1 -top hex2led

For more information, see:

XST Specific Non-Timing Options

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 599

Chapter 20: XST Command Line Mode

Library Names
During VHDL compilation, XST uses the librarywork as the default. If some VHDL files
are to be compiled to different libraries, add the library name before the file name. For
example, to compile hexl2led into the librarymy_lib, write the project file as follows:

vhdl work statmach.vhd vhdl work decode.vhd vhdl work
stopwatch.vhd vhdl work cnt60.vhd vhdl work smallcntr.vhd vhdl
work tenths.vhd vhdl my_lib hex2led.vhd

XST File Order Warning
If XST does not recognize the file order, it issues the following warning:

WARNING:XST:3204. The sort of the vhdl files failed, they will
be compiled in the order of the project file.

In this case, you must:
• Put all VHDL files in the correct order.
• Add the -hdl_compilation_order option with value user to the XST run command:

run -ifn watchvhd.prj -ifmt mixed -top stopwatch -ofn
watchvhd.ngc -ofmt NGC -p xc5vfx30t-2-ff324 -opt_mode Speed
-opt_level 1 -top hex2led -hdl_compilation_order user

Synthesizing Verilog Designs Using Command Line Mode
This section discusses Synthesizing Verilog Designs Using Command Line Mode, and
includes:
• Verilog Design Files and Modules
• Example Using Command Line Mode
• Synthesizing the Design
• Synthesizing HEX2LED

The following coding example shows the synthesis of a hierarchical Verilog design for a
Virtex® device using command line mode.

Verilog Design Files and Modules
The example uses a Verilog design called watchver. These files are found in the following
directory of the ISE® Design Suite installation directory:

ISEexamples\watchver

The files are:

• stopwatch.v

• statmach.v

• decode.v

• cnt60.v

• smallcntr.v

• tenths.v

• hex2led.v

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
600 www.xilinx.com UG627 (v 12.4) December 14, 2010

Chapter 20: XST Command Line Mode

This design contains seven modules:
• stopwatch
• statmach
• tenths (a CORE Generator™ software core)
• decode
• cnt60
• smallcntr
• hex2led

Example Using Command Line Mode
1. Create a new directory named vlg_m.
2. Copy the watchver design files from the ISEexamples\watchver directory of

the ISE Design Suite installation directory to the newly created vlg_m directory.

Specify the top-level design block with the -top command line option.

Synthesizing the Design
To synthesize the design, which is now represented by seven Verilog files, create a
project. XST now supports mixed VHDL and Verilog projects. Therefore, Xilinx®
recommends that you use the new project format whether it is a real mixed language
project or not. In this example, we use the new project format. To create a project file
containing only Verilog files, place a list of Verilog files preceded by the keyword verilog
in a separate file. The order of the files is not important. XST can recognize the hierarchy
and compile Verilog files in the correct order.
1. Open a new file, called watchver.v.
2. Enter the names of the Verilog files into this file in any order and save it:

verilog work decode.v
verilog work statmach.v
verilog work stopwatch.v
verilog work cnt60.v
verilog work smallcntr.v
verilog work hex2led.v

3. To synthesize the design, execute the following command from the XST shell or a
script file:
run -ifn watchver.v -ifmt mixed -top stopwatch -ofn
watchver.ngc -ofmt NGC -p xc5vfx30t-2-ff324 -opt_mode Speed
-opt_level 1

Synthesizing HEX2LED
To synthesize just HEX2LED and check its performance independently of the other
blocks, specify the top-level module to synthesize in the command line, using the -top
option.

run -ifn watchver.v -ifmt Verilog -ofn watchver.ngc -ofmt NGC -p
xc5vfx30t-2-ff324 -opt_mode Speed -opt_level 1 -top HEX2LED

For more information, see:

XST Specific Non-Timing Options

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
UG627 (v 12.4) December 14, 2010 www.xilinx.com 601

Chapter 20: XST Command Line Mode

Synthesizing Mixed Designs Using Command Line Mode
This section discusses Synthesizing Mixed Designs Using Command Line Mode, and
includes:

• Example Using Command Line Mode

• Synthesizing the Design

• File Order

This example shows the synthesis of a hierarchical mixed VHDL and Verilog design for
a Virtex® device using command line mode.

Example Using Command Line Mode
1. Create a new directory named vhdl_verilog.

2. Copy the following files from the ISEexamples\watchvhd directory of the ISE®
Design Suite installation directory to the newly-created vhdl_verilog directory.

• stopwatch.vhd

• statmach.vhd

• decode.vhd

• cnt60.vhd

• smallcntr.vhd

• tenths.vhd

3. Copy the hex2led.v file from the ISEexamples\watchver directory of the ISE
Design Suite installation directory to the newly created vhdl_verilog directory.

[

Synthesizing the Design
The design is now represented by six VHDL files and one Verilog file. To synthesize
the design, create a project. To create a project file, place a list of VHDL files preceded
by keyword vhdl, and a list of Verilog files preceded by keyword verilog in a
separate file.

File Order
The order of the files is not important. XST recognizes the hierarchy and compiles
Hardware Description Language (HDL) files in the correct order.

XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
602 www.xilinx.com UG627 (v 12.4) December 14, 2010

