
AAttllyyss HHDDMMII DDeemmoonnssttrraattiioonn PPrroojjeecctt

Revision: March 27, 2013
1300 NE Henley Court, Suite 3

Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

 page 1 of 4

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Overview

This project demonstrates the following video processing capabilities of the Atlys:

1) Reading in video data from an HDMI port and storing it in a designated region of the onboard
DDR2.

2) Modifying video data stored in DDR2 using an embedded MicroBlaze processor.
3) Outputting video data stored in DDR2 to a display device attached to an HDMI port.
4) Implementing an EDID transmitter so that attached devices will recognize the Atlys as a

display device

MPMC

MicroBlaze Processor

hdmi_in

Xps_Iic

P
LB

PLB

PLB

V
FB

C
TM

D
S

E
-D

D
C

V
FB

C

hdmi_out

TM
D

S

FPGA Logic

DDR

HDMI In Connector J3 HDMI Out Connector J2

Figure 1. Block Diagram

Atlys HDMI Demonstration Project

www.digilentinc.com page 2 of 4

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

The project was designed using Xilinx EDK 13.2 (see note below about use with newer versions). It
incorporates a custom HDMI input core and a custom HDMI output core that attach directly to an
MPMC core with VFBC interfaces. The HDMI output core is configurable within Xilinx Platform Studio
(XPS) and the HDMI input core is software configurable. Both of these cores were designed to be
reusable within other projects. The project also includes an xps_iic core for controlling the E-DDC
lines described in the DVI 1.0 standard. This allows the Atlys to be detected by computers as a
display device.

See Figure 1 above for a block diagram of the implemented hardware (interrupt and push button
GPIO cores not shown).

Note: It has been confirmed that this project will migrate up to EDK 14.3 without complication, and will
likely work with newer versions as well. To migrate the project, open it up in the version of XPS you
are using, and then allow the tools to “backup and migrate” the project when prompted. You should
then follow the “Version Management Wizard,” keeping all options as defaults. Be aware that newer
versions of SDK have slightly different context menus, and so the procedure below might not match
up perfectly. The most notable of these differences is that “Xilinx C Projects” are now referred to as
“Application Projects”.

Running the Demo Application

The following equipment is required:

 Digilent Atlys Development Board

 Computer running Xilinx EDK

 2 USB micro cables for programming and UART connection

 2 HDMI cables

 1 HDMI display or DVI display with HDMI/DVI adapter

 1 HDMI video source or DVI video source with HDMI/DVI adapter

The following steps outline how to build the project in XPS and then execute the demo application on
an Atlys. A basic understanding of Xilinx EDK is assumed. All file paths are given from the folder
containing this document:

1) Open up project\system.xmp in XPS. Allow the tools to perform any necessary updates.
2) Export the Hardware design to SDK. This will take some time to complete.
3) Open up a new workspace in Xilinx SDK. If not done automatically, import the generated

hardware profile.
4) Create an empty Xilinx C project and a standalone BSP. Copy all files from source\ to the src\

folder in the empty C project. Ensure to overwrite any existing files, and allow the project to
build.

5) Attach the Atlys UART and PROG ports to your computer and switch the Atlys on. Connect to
the UART port in a Terminal program (this can be done is SDK).

6) Under “Xilinx Tools”, select Program FPGA. In the dialog box that appears, ensure that “ELF
file to Initialize Block Ram” is set as bootloop and click Program.

7) Once the FPGA is programmed, right click on your project’s built binary (.elf file) and select
Run As-> Launch on Hardware.

8) Once the program has downloaded, attach a display device to HDMI OUT port J2 and a video
source to HDMI IN port J3. Ensure that jumpers 6,7 and 8 are not shorted.

Atlys HDMI Demonstration Project

www.digilentinc.com page 3 of 4

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

9) The onboard push buttons perform the following operations:

 BTNC – Start/Stop recording data into the frame buffer from the input video source. A
newly attached device will always be in the Stop state. When in the Start state, the
data present in the frame buffer is constantly being overwritten by new data from the
video source.

 BTNR – Print a test pattern to the frame buffer. The program should be in the stop
state in order to view the pattern before it is overwritten

 BTND – Invert the data in the frame buffer. The program should be in the stop state in
order to view the inverted frame before it is overwritten

 BTNL – Print the width and height of the input source frame over UART. A width of 0
and height of 1 means that no video data is being received.

Additional Notes on Using the Demo Application

 Input sources that require EDID packets to recognize a device must be attached after the
software has been loaded to the FPGA. This is because the IIC controller must be configured
properly in order to respond to the EDID requests which occur just as the device is plugged in.

 The output frame cannot be configured from software, and will constantly output the data
stored at the designated frame base address (set from XPS). If any of the values are changed
in XPS then the corresponding values must be changed in the hdmi_demo.h header file.

 The transmitted EDID packet may be altered in the hdmi_demo.h header file.

hdmi_in Register Descriptions

Register descriptions are given along with their memory offsets from the hdmi_in base address. Bit
numbers are assigned such that Bit(0) = MSB and Bit(31) = LSB. Note that all registers are only
accessible when a video source is attached and providing a valid clock signal. Registers are reset
whenever a video source is disconnected.

Control Register: 0x00 : R/W

Bits (0 : 30) – Reserved
Bit(31) – Write Enable – Enables the core to begin writing video data to the frame buffer. Default is ‘0’.

Status Register: 0x04 : R

Bits (0 : 29) – Reserved
Bit(30) – Frame Locked – Reading a value of ‘1’ means that the frame dimensions of the incoming

video signal have been determined.
Bit(31) – PLL Locked – Reading a value of ‘1’ means that a valid clock signal is detected on the

TMDS lines.

Frame Width Register: 0x08 : R

Bits (0 : 15) – Reserved
Bits (16 : 31) – Unsigned value that represents the width of the input frame in pixels

Atlys HDMI Demonstration Project

www.digilentinc.com page 4 of 4

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Frame Height Register: 0x0C : R

Bits (0 : 15) – Reserved
Bits (16 : 31) – Unsigned value that represents the height of the input frame in lines, minus 1

Line Stride Register: 0x10 : R/W

Bits (0 : 15) – Reserved
Bits (16 : 31) – Unsigned value that defines the line stride of the frame in pixels (described below).

This value must have bits 26 to 31 equal to zero in order to be 128 byte aligned.
Default value is 0 and must be set before enabling the core.

Frame Base Address Register: 0x14 : R/W

Bits (0 : 31) – Unsigned value that defines the physical address of the frame buffer. This address must

fall somewhere within the DDR2 memory space and have enough trailing memory to fit
the entire frame. This value must have bits 25 to 31 equal to zero in order to be 128
byte aligned. Default value is 0 and must be set before enabling the core.

Memory Format of Frame Buffer

Video data is stored linearly in memory as 16 bit pixels with the upper left hand pixel of the frame
being located at the defined frame base address. The remaining pixels in the line are stored
sequentially from this address. The beginning of the next line is determined by the value of the Line
Stride. The Line Stride is the number of pixels (each being 2 bytes) in memory between the
beginnings of two adjacent lines. By setting the Line Stride to a value larger than the Frame Width you
may pad the end of each line with unused memory. This prevents problems that may arise if the input
frame is wider than the frame being output.

The data at pixel address (x,y) with the upper left hand pixel being (0,0) may be accessed using the
following function in an SDK application:

Xil_In16(FRAME_BASE_ADDR + x*2 + y*LINE_STRIDE*2);

Note that it is currently a requirement of the hdmi_in and hdmi_out cores that any values provided for
frame base address, line stride, or frame width be 128-byte aligned. This means that any line stride
and frame width values must have bits 5 down to 0 equal to 0, and that the frame base address must
have bits 6 down to 0 equal to 0. Not following this guideline may result in undefined behavior.

The arrangement of color data within a 16-bit pixel is as follows:

BLUE
MSB

BLUE BLUE BLUE
BLUE
LSB

GRN
MSB

GRN GRN GRN GRN
GRN
LSB

RED
MSB

RED RED RED
RED
LSB

Figure 2. Pixel Data Bit Ordering

