
Lab Workbook Direct Memory Access using CDMA

 www.xilinx.com/university Zynq 4-1
 xup@xilinx.com
 © copyright 2017 Xilinx

Direct Memory Access using CDMA

Introduction

In Zynq, multiple interconnections are available between the PS and PL sections with different
performance levels for data transfer between the two subsystems. The General Purpose (GP) Master and
Slave AXI interconnect used in the previous labs are intended for peripherals that do not have high
bandwidth requirements. E.g. switches, leds, keyboard, mouse. There are four High Performance PS
slave to PL master AXI interfaces available for peripherals that need higher bandwidth. E.g. Video and
image processing applications. This lab guides you through the process of enabling a High Performance
AXI slave port in the PS, adding an AXI central DMA (CDMA) controller, and performing Direct Memory
Access (DMA) operations between various memories.

Objectives

After completing this lab, you will be able to:

 Enable a High Performance (HP) port of the processing system
 Add and connect the CDMA controller in the programmable logic
 Perform DMA operation between various memories

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

Design Description

In this lab, you will enable the HP port of the PS and add an instance of the Central DMA (CDMA)
controller in the PL. You will also add another instance of an AXI-BRAM controller to access the second
port of the BRAM via the processor. You will connect the interrupt request line from the CDMA to the
input of the GIC of the PS. The following diagram represents the completed design (Figure 1).

Figure 1. Completed Design

Direct Memory Access using CDMA Lab Workbook

Zynq 4-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

General Flow for this Lab

In the instructions below;
{sources} refers to: C:\xup\adv_embedded\2017_1_zynq_sources
{labs} refers to : C:\xup\ adv_embedded \2017_1_zynq_labs

Board support for the Zybo is not included in Vivado 2017.1 by default. The relevant zip file need to be
extracted and saved to: {Vivado installation}\data\boards\board_files\.

These files can be downloaded either from the Digilent, Inc. webpage
(https://reference.digilentinc.com/vivado/boardfiles2015) or the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-
zynq.html) where this material is also hosted.

Open the Project Step 1

1-1. Open the Vivado program. Open the lab3 project you created earlier or use
the lab3 project from the labsolutions directory, and save the project as
lab4.

1-1-1. Start Vivado if necessary and open either the lab3 project (lab3.xpr) you created earlier or the
lab3 project in the labsolution directory using the Open Project link in the Getting Started page.

1-1-2. Select File > Save Project As … to open the Save Project As dialog box. Enter lab4 as the
project name. Make sure that the Create Project Subdirectory option is checked, the project
directory path is {labs} and click OK.

1-1-3. This will create the lab4 directory and save the project and associated directory with lab4 name.

Step 1:

Open the
Project

Step 2:

Configure the
Processor to

enable
S_AXI_HP0

Step 3:

Add CDMA
and BRAM

Step 4:

Create the
Wrapper and
Generate the

Bitstream

Step 5:

Generate an
Application in

SDK

Step 6:

Test in
Hardware

Lab Workbook Direct Memory Access using CDMA

 www.xilinx.com/university Zynq 4-3
 xup@xilinx.com
 © copyright 2017 Xilinx

Configure the Processor to Enable S_AXI_HP0 Step 2

2-1. Open the Block Design and enable the S_AXI_HP0 interface

2-1-1. Click Open Block Design in the Flow Navigator pane

2-1-2. Double-click on the Zynq processing system instance to open its configuration form.

2-1-3. Select PS-PL Configuration in the Page Navigator window in the left pane, expand HP Slave AXI
Interface on the right, and click on the check-box of the S AXI HP0 Interface to enable it, and
click OK to close the Configuration window.

Add CDMA and BRAM Step 3

3-1. Instantiate the AXI central DMA controller.

3-1-1. Click the button and search for Central in the catalog.

3-1-2. Double-click the AXI Central Direct Memory Access to add an instance to the design.

3-1-3. Double-click on the axi_cdma_0 instance and uncheck the Enable Scatter Gather option.

3-1-4. Change the Write/Read Data Width to 64 and click OK.

Note the burst size changes from 16 to 8. You can increase this up to 256 to improve the
performance. Here we are using smallest number since the application allows small number of
words transfer.

3-2. Run connection automation

Connection automation could be run on all unconnected ports simultaneously. For the purposes of this
lab, each port will be connected separately so that the changes made by the automation process are
easier to follow.

3-2-1. Click on Run Connection Automation and select processing_system7_0/S_AXI_HP0 only.

3-2-2. Check that this port will be connected to the /axi_cdma_0/M_AXI port and click OK.

Direct Memory Access using CDMA Lab Workbook

Zynq 4-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 2. Connection automation

3-2-3. Verify the CDMA connection through the AXI SmartConnect to the HP0 port

Figure 3. Connecting AXI Central DMA controller to S_AXI_HP0

Notice that an instance of AXI SmartConnect (axi_smc_1) is added, S_AXI_HP0 of the
processing_system7_0 is connected to M00_AXI of the axi_smc_1, S00_AXI of the axi_smc_1 is
connected to the m_axi of the axi_cdm_0 instance. Also, m_axi_aclk of the axi_cdma_0 is
connected to the net originating from FCLK_CLK0 of the processing_system7_0.

3-2-4. Click on Run Connection Automation again, and select /axi_cdma_0 (which includes
S_AXI_LITE).

Notice that the axi_cdma_0/M_AXI port is no longer available to select. This is because it was
connected to the processing system in the previous step.

3-2-5. Ensure /processing_system7_0/M_AXI_GP0 is selected in the drop-down button and click OK.

Figure 4. CDMA connected

Lab Workbook Direct Memory Access using CDMA

 www.xilinx.com/university Zynq 4-5
 xup@xilinx.com
 © copyright 2017 Xilinx

3-3. Instantiate another BRAM Controller and a BRAM.

3-3-1. Click the button and search for BRAM in the catalog.

3-3-2. Double-click the AXI BRAM Controller to add an instance to the design.

3-3-3. Click on Run Connection Automation, and select /axi_bram_ctrl_1/S_AXI only.

3-3-4. For the Master connection, select axi_cdma_0/M_AXI from the dropdown box.

Figure 5. BRAM connection automation

3-3-5. Click OK to connect to make the connection.

Notice that another axi interface (M01_AXI) is added to the axi_smc_1 instance and is connected
to the S_AXI interface of the axi_bram_ctrl_1 instance.

Figure 6. Connection between the new BRAM controller to the CDMA

3-3-6. Double-click the axi_bram_ctrl_1 instance and change the Number of BRAM Interface to 1.

3-3-7. Change the Data Width to 64 and click OK.

3-3-8. Double-click the axi_bram_ctrl_0 instance and also change the Number of BRAM Interface to 1.
Click OK.

Direct Memory Access using CDMA Lab Workbook

Zynq 4-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

3-3-9. Using the wire tool, connect the BRAM_PORTA of the axi_bram_ctrl_1 instance to the
BRAM_PORTB of the Block Memory Generator axi_bram_ctrl_0_bram instance.

Figure 7. Connect the second BRAM controller

3-4. Connect the CDMA interrupt out port to the port of the processor.

3-4-1. Double-click on the processing_system7_0 instance to open its configuration form.

3-4-2. Select Interrupts in the Page Navigator window in the left pane, check the Fabric Interrupts box.

3-4-3. Expand Fabric Interrupts > PL-PS Interrupts Ports, and click on the check-box of the IRQ_F2P.

Figure 8. Enabling the processor interrupt

3-4-4. Click OK.

3-4-5. Using wiring tool, connect the cdma_introut to the IRQ_F2P port. (Click on the cdma_introut port
and drag to the IRQ_F2P port)

3-5. Using the Address Editor tab, set the BRAM controller size to 64KB.
Validate the design.

3-5-1. Select the Address Editor tab.

3-5-2. Expand the axi_cdma_0> Data section, and change the memory size of axi_bram_ctrl_1 to 64K.

Lab Workbook Direct Memory Access using CDMA

 www.xilinx.com/university Zynq 4-7
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 9. Address space

3-5-3. The design should look similar to the figure below.

Figure 10. Completed design

3-5-4. Select the Diagram tab, and click on the (Validate Design) button to make sure that there are
no errors.

Generate the Bitstream Step 4

4-1-1. Click on the Generate Bitstream to run the synthesis, implementation, and bit generation
processes.

4-1-2. Click Save to save the project, and Yes if prompted to run the processes. Click OK to launch the
runs.

4-1-3. When the bitstream generation process has completed successfully, click Cancel.

Direct Memory Access using CDMA Lab Workbook

Zynq 4-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

Generate an Application in the SDK Step 5

5-1. Export the implemented design, and start SDK

5-1-1. Export the hardware configuration by clicking File > Export > Export Hardware…

5-1-2. Click the box to Include Bitstream and click OK (Click Yes if prompted to overwrite a previous
module)

5-1-3. Launch SDK by clicking File > Launch SDK and click OK

5-1-4. To clean the workspace, right-click on each open project except system_wrapper_hw_platform_2
and select close project.

5-2. Create an empty application project, named lab4, and import the provided
lab4.c file.

5-2-1. Select File > New > Application Project.

5-2-2. In the Project Name field, enter lab4 as the project name.

5-2-3. Leave the default settings to create a new Board Support Package and click Next.

5-2-4. Select the Empty Application template and click Finish.

The lab4 project will be created in the Project Explorer window of SDK.

5-2-5. Select lab4 > src in the project view, right-click, and select Import.

5-2-6. Expand the General category and double-click on File System.

5-2-7. Browse to the {sources}\lab4 folder.

5-2-8. Select lab4.c and click Finish.

Test in Hardware Step 6

6-1. Connect and power up the board. Download the bitstream and program the
FPGA.

6-1-1. Connect and power up the board.

6-1-2. In SDK, select Xilinx Tools > Program FPGA.

6-1-3. Click the Program button to program the FPGA.

Lab Workbook Direct Memory Access using CDMA

 www.xilinx.com/university Zynq 4-9
 xup@xilinx.com
 © copyright 2017 Xilinx

6-2. Establish serial communication, and run the lab4 application from the
DDR3 memory.

6-2-1. Connect the terminal by selecting the appropriate COM port and setting the Baud Rate to 115200.

On ZedBoard you will see that the terminal window closes when you try to input your selection. In
this case you can either use SDK Terminal (you must hit Enter key after your selection) or use
third party comminucation programs such as TeraTerm, Putty etc.

On Zybo, you can continue using the Terminal window.

6-2-2. Run the lab4 application.

Follow the menu in the terminal emulator window and test transfers between various memories.

6-2-3. Select option 4 in the menu to complete the execution.

6-2-4. Close the SDK and Vivado programs by selecting File > Exit in each program.

6-2-5. Turn OFF the power on the board.

Conclusion

This lab led you through adding a CDMA controller to the PS so that you can perform DMA transfers
between various memories. You used the high-performance port so DMA could be done between the
BRAM residing in the PL section and DDR3 connected to the PS. You verified the design functionality by
creating an application and executing it from the DDR3 memory.

