
Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Intro to Partial Reconfiguration Flow Lab

Introduction

In this lab, you are dealing with a design that has two Reconfigurable Partitions (RP), each having two
Reconfigurable Module (RM). The design source consists of HDL (Verilog and VHDL) files. You will use
Vivado with Partial Reconfiguration (PR) capability enabled to synthesize HDL models and implement the
design. You will go through the PR flow to generate the full and partial bitstreams.

Objectives

After completing this lab, you will be able to:

• Use Tcl script to generate a Vivado IPI design, create a wrapper file from it, add the static logic files
and generate the design checkpoint

• Use Vivado’s bottom-up methodology to synthesize the necessary RMs

• Floorplan the design

• Add the desired RMs
• Create multiple configurations

• Implement the design and generate full and partial bitstreams for various configurations

• Download bitstreams to demonstrate a working partial reconfigurable design

Design Description

The purpose of this lab exercise is to implement a design that is dynamically reconfigurable using Vivado.
The design, shown in Figure 2, consists of two RP, each having two RM. The two RP are called math
and led. The math RP consists of two functions: addition and subtraction, whereas the led RP consist of
right and left shifting pattern of LEDs. User interacts with math RP using a terminal emulator program
whereas interaction with led RP is achieved using push-buttons. The dynamic modules are downloaded
using the Vivado Hardware Manager.

The directory structure of the project is shown below. The home directory of the lab contains some of the
Tcl scripts which you will use to generate the initial design and then to synthesize the RMs. The
Bitstreams, Checkpoint, Implement, and Synth directories are place holders where intermediate files are
stored as you progress through the lab. The Sources directory consists of several sub-folders. The
BOOT_zed and BOOT_zybo directories have their respective the BOOT.bin file which is needed for the
board to boot from.

The provided design places the UART (RX and TX) pins of the PS (Processing System) on the Cortex-A9
in a simple GPIO mode to allow the UART to be connected (passed through) to the Programmable Logic.
The processor samples the RX signal and sends it to the EMIO channel 1 which is connected to Rx input
of the HDL module provided in the Static directory. Similarly, the design samples the Tx output of the HDL
module through another EMIO channel and sends it on the PS UART TX pin. This is done through a
software application provided in the uart_through_gpio.sdk folder hierarchy. The design is shown in
Figure 2.

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 1. Directory structure of the lab

Figure 2. A Complete System

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-3
 xup@xilinx.com
 © copyright 2015 Xilinx

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

General Flow for this Lab

Step 1:
Generate DCP
for Static and
RM modules

Step 2:
Load Static and

one RM for
each RP

Step 3:
Define

Reconfigurable
Properties

Step 4:
Define

Reconfigurable
Partitions

Step 5:
Run

Design
Rule

Checker

Step 6:
Create

And Implement
First

Configuration

Step 7:
Create
Other

Configurations

Step 8:
Run

PR_Verify

Step 9:
Generate Bit

Files

Step 10:
Test the Design

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Generate DCPs for the Static Design and RM Modules Step 1

In this design we will use board’s USB-UART which is controlled by the
Zynq’s ARM Cortex-A9 processor. Our PL design needs access to this
USB-UART. So first thing we will do is to create a Processing System
design which will put the USB-UART connections in a simple GPIO-style
and make it available to the PL section.

1-1. Start Vivado and execute the provided Tcl scripts to create the design
check point for the static design. The design has two RPs.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2015.2 >
Vivado 2015.2

On Linux machine, open a terminal window and then type vivado.

1-1-2. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/uart_led_lab

1-1-3. Generate the PS design by executing the provided Tcl script.

source ps7_create_zed.tcl (for ZedBoard) or

source ps7_create_zybo.tcl (for Zybo)

This script will create a block design called system, instantiate ZYNQ PS with SD 0 interface
enabled, connect UART 1 to GPIO channels 48 and 49, enable FCLK0, RESET0_N, and two
EMIO channels. It will then create a top-level wrapper file called system_wrapper.v which will
instantiate the system.bd (the block design). You can check the contents of the tcl files to confirm
the commands that are being run.

1-1-4. Execute the provided rest_of_system_create.tcl file.

source rest_of_system_create.tcl

This will generate the rest of the static design, include the generated PS system, and synthesize
the entire design, generating the design check point (top_wrapper.dcp) file in the
uart_led_<board>_lab/uart_led_<board>_lab.runs/synth_1 directory. Use zed or zybo for
<board>.

Wait for the synthesis process to complete. When complete, the project will close

1-1-5. Using the Windows Explorer, copy the top_wrapper.dcp file from c:\xup\PR\labs
\uart_led_lab\uart_led_<board>_lab\uart_led_<board>_lab.runs\synth_1 into the Synth\Static
directory under the current lab directory.

1-2. Since we have RMs in HDL format, we need to synthesize them and
generate the dcp for each of the RMs. The generated DCPs should be
stored in appropriate directories so they can be accessed correctly;
particularly, the dcp files for RM must be in separate directories as their
dcp file names will be same for a given RP.

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-5
 xup@xilinx.com
 © copyright 2015 Xilinx

1-2-1. In the Tcl Shell window make sure that the working directory is the lab root directory. If not then
enter the following command to change to the lab root directory and hit Enter.

cd c:/xup/PR/labs/uart_led_lab

1-2-2. Synthesize each of the RMs (two for addsub and two for the shift) by executing the provided Tcl
script.

source synth_reconfig_modules_zed.tcl (for ZedBoard) or

source synth_reconfig_modules_zybo.tcl (for Zybo)

This script will add the HDL files (the addsub modules are in VHDL whereas the shift modules are
in Verilog) for a given RM, synthesize the module(s) in out of context mode and write the design
checkpoint (dcp) in the respective destination folder under the Synth directory. After each RM’s
dcp is generated, the respective design is closed.

1-2-3. At this point the directory content will look like shown below.

Figure 3. Synth directory hierarchy and content

Load Static and one RM for each RPs in Vivado Step 2

Since all required netlist files (dcp) for the design are now available, you
will use Vivado to floorplan the design, define Reconfigurable Partitions,
add Reconfigurable Modules, run the implementation tools, and generate
the full and partial bitstreams.

2-1. In this step you will load the static design and one RM design for each of
the RPs.

2-1-1. In the Tcl Shell window make sure that the working directory is the lab root directory otherwise
execute the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/uart_led_lab

2-1-2. Load the static design using the open_checkpoint command.

open_checkpoint Synth/Static/top_wrapper.dcp

You can see the design structure in the Netlist pane with two black boxes for the
reconfig_addsub and reconfig_leds modules.

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 4. Static design with two black boxes

Two critical warnings are issued regarding unmatched instances. These warnings are
caused because the reconfigurable modules have yet to be loaded, and can safely be
ignored.

2-1-3. Set the HD_VISUAL parameter ON so we can see the frames of the actual implemented pblocks
later on by executing the following Tcl command.

set_param hd.visual 1

2-1-4. Select the reconfig_addsub instance and then select the Properties tab in the Cell Properties
window. Note that the IS_BLACKBOX checkbox is checked.

2-1-5. Load one RM for each RP by using the read_checkpoint command.

read_checkpoint -cell top_i/reconfig_addsub

Synth/rModule_addsub/adder/addsub_synth.dcp

read_checkpoint -cell top_i/reconfig_leds

Synth/rModule_leds/leftshift/shift_synth.dcp

You can now see the design structure in the Netlist pane with an RM for the reconfig_addsub and
reconfig_leds modules loaded.

Figure 5. Static design with RM loaded

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-7
 xup@xilinx.com
 © copyright 2015 Xilinx

2-1-6. Select the reconfig_addsub instance and then select the Properties tab in the Cell Properties
window. Note that the IS_BLACKBOX checkbox is not checked since a RM design is loaded.

2-1-7. Select the Statistics tab and note the amount and type of resources the module uses.

Figure 6. Resources used by the loaded RM

2-1-8. Similarly, you can select the reconfig_leds instance and then select the Statistics tab to note the
type and amount of resources used.

Define Reconfigurable Properties on each RM Step 3

3-1. In this design you have two Reconfigurable Partitions each having two
RMs. Define the reconfigurable properties to each of the loaded RMs.

3-1-1. Define each of the loaded RMs (submodules) as partially reconfigurable by setting the
HD.RECONFIGURABLE property using the following commands.

set_property HD.RECONFIGURABLE 1 [get_cells top_i/reconfig_addsub]

set_property HD.RECONFIGURABLE 1 [get_cells top_i/reconfig_leds]

This is the point at which the Partial Reconfiguration license is checked. If you don’t have a valid
license, you will get an error message.

3-1-2. Select the reconfig_addsub instance and notice that the DONT_TOUCH checkbox is selected
in the Cell Properties window.

3-1-3. Save the assembled design state for this initial configuration (Is this required or optional) using
the following command.

write_checkpoint Checkpoint/top_link_add_left.dcp

This will write the dcp file in the provided Checkpoint directory.

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Define the Reconfigurable Partition Region Step 4

4-1. Next you must floorplan the RP regions. Depending on the type and
amount of resources used by each RM, the RP region must be
appropriately defined so it can accommodate any RM variant.

4-1-1. Select Layout > Floorplanning.

4-1-2. Select Edit > Find. In the Find field. Select Sites in the Find drop-down box.

4-1-3. Ensure Name and contains are selected, and in the text box change * to *SLICE_X24Y36.

4-1-4. Click on the + button, then select OR using the drop-down button, choose Name contains again,
type *SLICE_X27Y39, and click OK.

You will see a new tab, called Sites – Find will appear showing two entries.

4-1-5. Select one entry at a time, right-click and select Mark.

You will see marked sites in the Device window. You may have to zoom out.

4-1-6. Select the reconfig_addsub instance in the Netlist window, right-click, and select Floorplanning
> Draw Pblock.

4-1-7. Draw a box that bounds SLICE_X24Y36:SLICE_X27Y39 marked in the previous step.

Figure 7. Drawing the addsub Pblock

4-1-8. Click OK to include SLICE as the resources to be reconfigured.

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-9
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 8. Defining resources to reconfigure

4-1-9. Similarly, mark the *SLICE_X24Y20 and *SLICE_X27Y24 sites.

4-1-10. Select the reconfig_leds instance in the Netlist window, right-click, and select Floorplanning >
Draw Pblock.

4-1-11. Draw a box that bounds SLICE_X24Y20:SLICE_X27Y24 (20 slices).

4-1-12. Click OK.

Run Design Rule Checker Step 5

5-1. It is always good idea to run a design rule checker so you can catch errors
as soon as possible.

5-1-1. Select Tools > Report > Report DRC.

5-1-2. Deselect All Rules, select Partial Reconfiguration, and then click OK to run the PR-specific
design rules.

You will see one error and one warning. The first error indicates that we have two RMs in the
same column which is not permitted. Partial bitstreams by construction are the height of a full
clock region, so Reconfigurable Partitions may not reside above or below each other in the same
clock region. One of these two pblocks must be moved to the left or right so no vertical overlap
occurs.

The warning hints: “4 cells with INIT values are found without resets inside the Pblock
'pblock_reconfig_leds'. Without a reset the INIT value will not be loaded during a partial
reconfiguration. To fix this issue do one of the following: 1) set the Pblock property
RESET_AFTER_RECONFIG=TRUE on the Pblock. Using this constraint requires that the Pblock
RANGEs be frame aligned. 2) add a reset to each cell that can be held during and released after
a partial reconfiguration.”

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 9. DRC output

5-1-3. Using the Pblock for reconfig_leds, drag and drop it left so that it does not fall under the other
pblock and is positioned to SLICE_X16Y20:SLICE_X19Y24.

You can use the Find command, search for SLICE_X16Y20, mark it and then grab and drop the
pblock to the left of the marked site.

5-1-4. Select Tools > Report > Report DRC, then click OK to run the PR-specific design rules.

You will notice that one warning related to reconfig_leds remains.

5-1-5. Select the reconfig_leds instance, select the properties tab, check the
RESET_AFTER_RECONFIG property, and select ON for the SNAPPING_ON property.

Figure 10. Enabling RESET_AFTER_RECONFIG and turning ON SNAPPING_MODE

5-1-6. Select Tools > Report > Report DRC, then click OK to run the PR-specific design rules. There
should be no violations.

5-1-7. Save the Pblocks and associated properties by issuing the following command.

write_xdc Sources/xdc/fplan_zed.xdc (for Zedboard) or

write_xdc Sources/xdc/fplan_zybo.xdc (for Zybo)

Create and Implement First Configuration Step 6

6-1. Add the top-level io and static design constraints. Create and implement
the first Configuration.

6-1-1. Load the top-level constraint file by executing the following command.

read_xdc Sources/xdc/top_io_zed.xdc (for Zedboard) or

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-11
 xup@xilinx.com
 © copyright 2015 Xilinx

read_xdc Sources/xdc/top_io_zybo.xdc (for Zybo)

This sets the device pinout and top-level timing constraints. This top-level XDC file should only
contain constraints that reference objects in the static design. Constraints for logic or nets inside
of the RP can be applied for specific Reconfigurable Modules if needed.

6-1-2. Optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

6-1-3. Once the design is implemented (placed and routed), zoom in into the Device view to see the
pblock_reconfig_addsub.

You will see the introduction of Partition Pins. These are the physical interface points
between static and reconfigurable logic and are the replacement in Vivado for what was
Proxy Logic in ISE, but without the requirement of LUT1 insertion. They are anchor
points within an interconnect tile through which each IO of the reconfigurable module
must route. They appear as white boxes in the placed design view.

Figure 11. Partition pins in pblock_reconfig_addsub

6-1-4. Select one of the pins and see the Cell Pins tab of the Partition Pin Properties.

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-12 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 12. Partition pin properties in the Cell Pins tab

6-1-5. Now view the pblock_reconfig_leds block area and notice that there are no partition pins placed
inside the defined pblock. If you zoom out more, you will find its partition pins located towards the
top-edge of the clock region (still in the same column area). This is due to SNAPPING_MODE
property we had turned ON earlier. With that property turned ON the whole column going through
the drawn pblock is covered by the given pblock and no static logic will be placed there.

6-1-6. Verify that by executing the following to Tcl commands:

source ./hd_visual/pblock_reconfig_leds_AllTiles.tcl

highlight_objects -color yellow [get_selected_objects]

Many Tcl scripts are generated under hd_visual directory since we had turned ON the HD
VISAUL property.

If you zoom out and or resize the viewing area, you will see the highlighted frames. If you zoom in
enough you will notice the actual defined pblock area.

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-13
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 13. Reconfigurable partition frames are highlighted

6-1-7. Save the full design checkpoint and create report files by executing the following commands:

write_checkpoint -force Implement/Config_add_left/top_route_design.dcp

report_utilization -file Implement/Config_add_left/top_utilization.rpt

report_timing_summary –file

Implement/Config_add_left/top_timing_summary.rpt

6-1-8. Save checkpoints for each of the reconfigurable modules by issuing these two commands:

write_checkpoint -force -cell top_i/reconfig_addsub

Checkpoint/addsub_add_route_design.dcp

write_checkpoint -force -cell top_i/reconfig_leds

Checkpoint/shift_left_route_design.dcp

At this point, a fully implemented partial reconfiguration design from which full and partial
bitstreams can be generated is ready. The static portion of this configuration must be used for all
subsequent configurations, and to isolate the static design, the current reconfigurable modules
must be removed.

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-14 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

6-2. After the first configuration is created, the static logic implementation will
be reused for the rest of the configurations. So it should be saved. But
before you save it, the loaded RM should be removed.

6-2-1. Clear out the existing RMs executing the following commands.

update_design -cell top_i/reconfig_addsub -black_box

update_design -cell top_i/reconfig_leds -black_box

Issuing these commands will result in design changes including, the number of Fully Routed nets
(green) being decreased, the number of Partially Routed nets (yellow) being increased, and
inst_shift and inst_count will appear in the Netlist view as empty.

Figure 14. The design with unloaded modules

6-2-2. Lock down all placement and routing by executing the following command.

lock_design -level routing

Because no cell was identified in the lock_design command, the entire design in memory
(currently consisting of the static design with black boxes) is affected.

6-2-3. Write out the remaining static-only checkpoint by executing the following command.

write_checkpoint -force Checkpoint/static_route_design.dcp

This static-only checkpoint would be used for any future configurations, but here, you simply keep
this design open in memory.

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-15
 xup@xilinx.com
 © copyright 2015 Xilinx

Create Other Configurations Step 7

7-1. Read next set of RM dcps.

7-1-1. With the locked static design open in memory, read in post-synthesis checkpoints for the other
two reconfigurable modules.

read_checkpoint -cell top_i/reconfig_addsub

Synth/rModule_addsub/subtractor/addsub_synth.dcp

read_checkpoint -cell top_i/reconfig_leds

Synth/rModule_leds/rightshift/shift_synth.dcp

7-1-2. Optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

7-1-3. Save the full design checkpoint by executing the following command.

write_checkpoint -force

Implement/Config_subtract_right/top_route_design.dcp

7-1-4. Save the checkpoints for each of the reconfigurable modules by issuing the following commands.

write_checkpoint -force -cell top_i/reconfig_addsub

Checkpoint/addsub_subtract_route_design.dcp

write_checkpoint -force -cell top_i/reconfig_leds

Checkpoint/shift_right_route_design.dcp

7-1-5. Close the project.

close_project

7-2. Create the blanking configuration.

7-2-1. Open the static route checkpoint, which will open a new Vivado window.

open_checkpoint Checkpoint/static_route_design.dcp

7-2-2. For creating the blanking configuration, use the update_design -buffer_ports command to
insert LUTs tied to constants to ensure the outputs of the reconfigurable partition are not left
floating. Enter the following in the newly opened window.

update_design -buffer_ports -cell top_i/reconfig_addsub

update_design -buffer_ports -cell top_i/reconfig_leds

7-2-3. Now place and route the design. There is no need to optimize the design.

place_design

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-16 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

route_design

The base (or blanking) configuration bitstream, when it is generated in the next section, will have
no logic for either reconfigurable partition. It will consist of outputs driven by ground. Outputs can
be tied to VCC if desired, using the HD.PARTPIN_TIEOFF property.

7-2-4. Save the checkpoint in the Config_blank directory.

write_checkpoint -force Implement/Config_blank/top_route_design.dcp

7-2-5. Close the project.

close_project

Run PR_Verify Step 8

8-1. You must ensure that the static implementation, including interfaces to
reconfigurable regions, is consistent across all Configurations. To verify
this, you run the PR_Verify utility

8-1-1. Run the pr_verify command from the Tcl Console.

pr_verify -initial Implement/Config_add_left/top_route_design.dcp -

additional {Implement/Config_subtract_right/top_route_design.dcp

Implement/Config_blank/top_route_design.dcp}

When completed scroll through the Tcl Console window and notice the following:

Figure 15. PR_verify result

8-1-2. Execute the following command to close the project.

close_project

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-17
 xup@xilinx.com
 © copyright 2015 Xilinx

Generate Bit Files Step 9

9-1. After all the Configurations have been validated by PR_Verify, full and
partial bit files must be generated for the entire project

9-1-1. Read the first configuration in the memory, using the command. in the original Vivado window

open_checkpoint Implement/Config_add_left/top_route_design.dcp

9-1-2. Generate the full and partial bitstreams for this design, making sure that the bit files are in a
unique directory related to the full design checkpoint from which they were created. Run the
following in the newly opened Vivado window:

write_bitstream -file Bitstreams/Config_addleft.bit

close_project

Notice the three bitstreams will be created.

Config_addleft.bit This is the power-up, full design bitstream.
Config_addleft_pblock_reconfig_addsub_partial.bit This is the partial bit file for the adder
module.

Config_addleft_pblock_reconfig_leds_partial.bit This is the partial bit file for the leftshift
module.

9-1-3. Generate full and partial bitstreams for the second configuration, again keeping the resulting bit
files in an appropriate folder by executing the following commands.

open_checkpoint Implement/Config_subtract_right/top_route_design.dcp

write_bitstream -file Bitstreams/Config_subtractright.bit

close_project

The three bitstreams will be created with a different base name.

9-1-4. Generate a full bitstream with black boxes, plus blanking bitstreams for the reconfigurable
modules. Blanking bitstreams can be used to “erase” an existing configuration to reduce power
consumption. Before creating the bitstreams, use the “update_design -buffer_ports” command to
insert LUTs tied to constants to ensure the outputs of the reconfigurable partition are not left
floating.

open_checkpoint Implement/Config_blank/top_route_design.dcp

write_bitstream -file Bitstreams/blanking.bit

close_project

The base configuration bitstream will have no logic for either reconfigurable partition, simply
outputs driven by ground. Outputs can be tied to VCC if desired, using the
HD.PARTPIN_TIEOFF property.

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-18 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Test the Design Step 10

10-1. Connect the ZedBoard board with two micro-USB cables (JTAG and UART
ports) or Zybo with one micro-USB cable. Place the board in the SD boot
mode. Copy the provided BOOT.bin file, either from the Sources/BOOT_zed
or Sources/BOOT_zybo depending on the target board, into the SD Card
and place the SD card in the board. Power On the board. Establish the
connection with the Hardware Manager and program the chip with the
blanking.bit bitstream file.

10-1-1. Make sure that two micro-usb cables are connected, one to JTAG and another to USB in case of
ZedBoard or one micro-usb cable in case of Zybo.

10-1-2. Make sure that the board is set to boot in SD card boot mode (ZedBoard->Jumpers MIO5:3
should be set to 110; Zybo->JP5).

10-1-3. Using the Windows Explorer, copy the BOOT.bin, either from the
c:/xup/PR/uart_led_lab/Sources/BOOT_Zed directory or the
c:/xup/PR/uart_led_lab/Sources/BOOT_Zybo directory , into the root directory of a SD Card.

10-1-4. Place the SD Card in the board and power ON the board.

10-1-5. Start the Vivado Hardware Manager by clicking on the Open Hardware Manager under the
Tasks section, or selecting from the Tools menu.

10-1-6. Select Open Target > Auto Connect

10-1-7. Right-click on xc7z020_1 (or xc7z010_1) and select Program Device…

10-1-8. Click on the Browse button, browse to c:/xup/PR/labs/uart_led_lab/Bitstreams, select
blanking.bit, and click OK.

10-1-9. Click Program.

You should see the bitstream is downloaded, the DONE LED turned ON, and right-most 4 LEDs
are OFF, since there is no active shift RM in the blanking.bit file.

10-2. Start a terminal emulator program such as TeraTerm or HyperTerminal.
Select an appropriate COM port (you can find the correct COM number
using the Control Panel). Set the COM port for 115200 baud rate
communication.

10-2-1. Start a terminal emulator program such as TeraTerm or HyperTerminal.

10-2-2. Select the appropriate COM port (you can find the correct COM number using the Control Panel).

10-2-3. Set the COM port for 115200 baud rate communication.

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-19
 xup@xilinx.com
 © copyright 2015 Xilinx

10-3. Start a SDK session, point it to the
c:/xup/PR/labs/uart_led_lab/Sources/SDK_zed/uart_through_gpio.sdk
workspace.

10-3-1. Open SDK by selecting Start > All Programs > Xilinx Design Tools > SDK 2015.2 > Xilinx
SDK 2015.2

10-3-2. In the Select a workspace window, click on the browse button, browse to either the
c:\xup\PR\labs\uart_led_lab\Sources\SDK_Zed directory either the
c:\xup\PR\labs\uart_led_lab\Sources\SDK_Zybo directory, select uart_through_gpio.sdk, and
click OK.

10-3-3. Click OK.

10-3-4. In the Project Explorer, right-click on the TestApp, select Run As, and then Launch on Hardware
(GDB).

Figure 16. Running the application

The program will be downloaded and the execution will begin indicated by the Terminate button
() in SDK.

10-3-5. In the serial terminal window, type ? followed by the Enter key.

You should see + as the response.

10-4. Program the device with various partial bitstreams and verify the
functionality by entering various operands and pressing BTNL, BTNR, and
BTNC on the Zedboard OR BTN0, BTN1, and BTN2 on the Zybo board. Note
the time it takes to program each RP compared to the entire design
bitstream.

10-4-1. In Vivado, right-click on xc7z020_1 or xc7z010_1 and select Program Device…

10-4-2. Click on the Browse button, browse to c:/xup/PR/labs/uart_led_lab/Bitstreams, select
Config_addleft_pblock_reconfig_addsub_partial.bit, and click OK.

Intro to Partial Reconfiguration Flow Lab Lab Workbook

Zynq 1-20 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

10-4-3. Click Program.

Notice how quickly the device gets programmed. The adder module is loaded.

10-4-4. In the serial terminal window, type ? followed by the Enter key.

You should see + as the response since now the adder module is loaded.

10-4-5. In the serial terminal window, type the following commands (pressing Enter key after each line) to
verify the adder functionality.

Figure 17. Terminal window showing add operation

10-4-6. Similarly, program the device with Config_addleft_pblock_reconfig_leds_partial.bit and notice
that only the least significant LED is ON.

10-4-7. Press BTNR (ZedBoard) or BTN0 (Zybo) and observe the LEDS starts shifting left.

10-4-8. Similarly, program the device with Config_subtractright_pblock_reconfig_addsub_partial.bit
file. Enter ? in the terminal and observe that – is displayed. Enter the following commands and
observe the subtract operation.

Figure 18. Terminal window showing subtract operation

10-4-9. Similarly, program the device with Config_subtractright_pblock_reconfig_leds_partial.bit and
notice that LEDS are shifting right.

Lab Workbook Intro to Partial Reconfiguration Flow Lab

 www.xilinx.com/support/university Zynq 1-21
 xup@xilinx.com
 © copyright 2015 Xilinx

You can press BTNL (ZedBoard) or BTN1 (Zybo) to stop the shifting; BTNR (ZedBoard) or BTN0
(Zybo) to restart the shifting, or BTNC (ZedBoard) or BTN2 (Zybo) to reset the shifter (since the
right shifting module is loaded) and it will show LED3 ON.

10-4-10. When satisfied, close the hardware manager by selecting File > Close Hardware Manager.

10-4-11. Click on the Terminate button in the SDK.

10-4-12. Close the SDK by selecting File > Exit.

10-4-13. Close Vivado by selecting File > Exit.

10-4-14. Power OFF the board.

Conclusion

This lab showed you steps involved in generating partial reconfiguration design using Vivado 2015.2 with
partial reconfiguration feature enabled. You used the provided Tcl scripts to generate the static design
that consists of the processing system to configure the UART port as a simple GPIO port and extend the
signals to the programmable logic sub-system where they are connected to the actual design. You used
another script to synthesize the RMs in a bottom-up approach which is required for the PR flow. You
create the configurations and implemented the design. You generated the full and partial bitstreams,
downloaded them and verified the functionality using the development board.

