
Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Reconfiguring Processor Peripheral Lab

Introduction

In this lab, you will use Vivado IPI and Software Development Kit to create a reconfigurable peripheral
using ARM Cortex-A9 processor system on Zynq. You will use Vivado IPI to create a top-level design,
which includes the Zynq processor system as a sub-module. During the PR flow, you will define one
Reconfigurable Partition having two Reconfigurable Modules (addition and multiplication). You will create
multiple Configurations and run the Partial Reconfiguration implementation flow to generate full and
partial bitstreams. You will use ZedBoard and/or Zybo to verify the design in hardware using a SD card to
initially configure the FPGA, and then partially reconfigure the device using the PCAP under user
software control.

Objectives

After completing this lab, you will be able to:

• Use a Tcl script to generate a Vivado IPI design, create a wrapper file from it and generate the design
checkpoint

• Use Vivado’s bottom-up methodology to synthesize the necessary RMs

• Floorplan the design
• Add the desired RMs

• Create multiple configurations

• Implement the design and generate full and partial bitstreams for various configurations

• Download bitstreams to demonstrate a working partial reconfigurable design

Design Description

The purpose of this lab exercise is to implement a design that can be dynamically reconfigurable using
PCAP resource and PS sub-system. The system consists of one peripheral (math functions), having two
unique capabilities (addition and multiplication). The user verifies the functionality using a user
application. The dynamic modules are reconfigured using the PCAP resource available through Device
Configuration block.

The design is shown in Figure 1.

Reconfiguring Processor Peripheral Lab Lab Workbook

Zynq 3-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 1. The design

The directory structure is as shown here:

The Sources directory provides the math processor core (in ip_repo directory), source file for add and
mult functions (in reconfig_modules > rp_add and reconfig_modules > rp_mult directories), the software
application (in TestApp directory), and a place holder for the floorplan constraints (in xdc directory). The
Synth and its sub-directories structure will hold the synthesized checkpoints, the Implement and its sub-
directories will hold the implemented configurations, the Checkpoint will hold the static, and the two
configuration checkpoints, and the Bitstreams directory will hold the generated full and partial bitstreams.
In the home directory, there are several Tcl scripts which will perform several tasks including the
processor system creation and the bottom-up synthesis of the reconfigurable modules.

Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-3
 xup@xilinx.com
 © copyright 2015 Xilinx

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

General Flow for this Lab

Generate DCPs for the Static Design and RM Modules Step 1

1-1. Start Vivado and execute the provided Tcl script to create the design check
point for the static design having one RP.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2015.2 >
Vivado 2015.2

1-1-2. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/reconfig_peripheral_lab

1-1-3. Generate the PS design executing the provided Tcl script.

source ps7_create_zed.tcl (for ZedBoard) or

source ps7_create_zybo.tcl (for Zybo)

This script will create the block design called system, instantiate ZYNQ PS with SD 0 and UART
1 interfaces enabled. It will also enable the GP0 interface along with FCLK0 and RESET0_N
ports. The provided math IP will then be instantiated. It will then create a top-level wrapper file
called system_wrapper.v which instantiates the system.bd (the block design).

Step 1:
Generate DCP
for Static and
RM modules

Step 2:
Load Static and

one RM for
each RP

Step 3:
Define

Reconfigurable
Properties

Step 4:
Define

Reconfigurable
Partitions

Step 5:
Run Design

Rule Checker

Step 6:
Create And

Implement First
Configuration

Step 7:
Create Other

Configurations

Step 8:
Run

PR_Verify

Step 9:
Generate Bit

Files

Step 10:
Generate
Software

Application

Step 11:
Test the Design

Reconfiguring Processor Peripheral Lab Lab Workbook

Zynq 3-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 3. The system block design

1-1-4. Click Run Synthesis under the Synthesis group in the Flow Navigator to run the synthesis
process.

Wait for the synthesis to complete. When done click Cancel.

1-1-5. Using the windows explorer, copy the system_wrapper.dcp file from
reconfig_peripheral_<board>_lab\reconfig_peripheral_<board>_lab.runs\synth_1 into the
Synth\Static directory under the current lab directory. Use zed or zybo for <board>.

1-1-6. Close the project by typing the close_project command in the Tcl console or selecting File >
Close Project.

1-2. Since we have RMs in HDL format, we need to synthesize them and
generate the dcp for each of the RMs. The generated dcps should be
stored in appropriate directories so they can be accessed correctly;
particularly, the dcp files for RM must be in separate directories as their
dcp file names will be same for a given RP.

1-2-1. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/reconfig_peripheral_lab

1-2-2. Synthesize each of the RMs (two) executing the provided Tcl script.

source synth_reconfig_modules_zed.tcl (for ZedBoard) or

source synth_reconfig_modules_zybo.tcl (for Zybo)

This script will synthesize the HDL files for each RM in an out of context mode and write the
design checkpoint (dcp) in the respective destination folder under the Synth directory. After each
RM’s dcp is generated, the respective design is closed.

1-2-3. At this point the directory content will look like shown below.

Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-5
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 4. Synth directory hierarchy and content

Load Static and one RM for the RP in Vivado Step 2

Since all required netlist files (dcp) for the design are now available, you
will use Vivado to floorplan the design, define Reconfigurable Partitions,
add Reconfigurable Modules, run the implementation tools, and generate
the full and partial bitstreams.

2-1. In this step you will load the static and one RM designs for the RP.

2-1-1. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/reconfig_peripheral_lab

2-1-2. Load the static design using the open_checkpoint command.

open_checkpoint Synth/Static/system_wrapper.dcp

You can see the design structure in the Netlist pane with one black box for the rp_instance
module.

Figure 4. Static design with a black box

2-1-3. Select the rp_instance instance and then select the Properties tab in the Cell Properties window.
Note that the IS_BLACKBOX checkbox is checked.

2-1-4. Load one RM for the RP by using the read_checkpoint command.

Reconfiguring Processor Peripheral Lab Lab Workbook

Zynq 3-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

read_checkpoint -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

Synth/reconfig_modules/rp_add/add_mult_synth.dcp

You can now see the design structure in the Netlist pane with an RM for the rp_instance module
loaded.

Figure 5. Static design with RM loaded

2-1-5. Select the rp_instance instance and then select the Properties tab in the Cell Properties window.
Note that the IS_BLACKBOX checkbox is not checked since a RM design is loaded.

2-1-6. Select the Statistics tab and note the amount and type of resources the module uses.

Figure 6. Resources used by the loaded RM

Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-7
 xup@xilinx.com
 © copyright 2015 Xilinx

Define Reconfigurable Properties on each RM Step 3

3-1. In this design you have one Reconfigurable Partition having two RMs.
Define the reconfigurable properties to the loaded RM.

3-1-1. Define each of the loaded RMs (submodules) as partially reconfigurable by setting the
HD.RECONFIGURABLE property using the following commands.

set_property HD.RECONFIGURABLE 1 [get_cells

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance]

This is the point at which the Partial Reconfiguration license is checked.

3-1-2. Select the rp_instance instance and notice that the DONT_TOUCH checkbox is selected in
the Cell Properties window.

3-1-3. Save the assembled design state for this initial configuration using the following command.

write_checkpoint Checkpoint/top_link_add.dcp

This will write the dcp file in the provided Checkpoint directory.

Define the Reconfigurable Partition Region Step 4

4-1. Next you must floorplan the RP region. Depending on the type and amount
of resources used by all the RMs for the given RP, the RP region must be
appropriately defined so it can accommodate any RM variant.

4-1-1. You execute the following command to define the region, perform the DRC and go to Step 6, OR
continue following the step-by-step instructions.

read_xdc Sources/xdc/fplan_zed.xdc (for ZedBoard) or

read_xdc Sources/xdc/fplan_zybo.xdc (for Zybo) or

4-1-2. Select Edit > Find.

For ZedBoard: In the Find field, select Sites in the Find drop-down box, then Name and enter
*SLICE_X34Y109, click on the + button, then select OR using the drop-down button, Name again,
*SLICE_X39Y123, and finally click OK.

For Zybo: In the Find field, select Sites in the Find drop-down box, then Name and enter
*SLICE_X8Y50, click on the + button, then select OR using the drop-down button, Name again,
*SLICE_X13Y64, and finally click OK.

You will see a new tab, called Sites – Find will appear showing two entries.

4-1-3. Select one entry at a time, right-click and select Mark.

You will see marked sites in the Device window. You may have to zoom out.

Reconfiguring Processor Peripheral Lab Lab Workbook

Zynq 3-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

4-1-4. Select the rp_instance instance in the Netlist window, right-click, and select Floorplanning >
Draw Pblock.

4-1-5. Draw a box that bounds SLICE_X34Y109:SLICE_X39Y123 (for ZedBoard) or

SLICE_X8Y50:SLICE_X13Y64 (for Zybo) marked in the previous step.

4-1-6. Click OK to include SLICE as well as DSP48 slices as the resources to be reconfigured. The
DSP48 slices are required for the multiplier RM.

Run Design Rule Checker Step 5

5-1. It is always good idea to run a design rule checker so you can catch errors
as soon as possible.

5-1-1. Select Tools > Report > Report DRC.

5-1-2. Deselect All Rules, select Partial Reconfiguration, and then click OK to run the PR-specific
design rules.

You should not see any error.

5-1-3. Save the Pblocks and associated properties by issuing the following command.

write_xdc Sources/xdc/fplan_<board>.xdc Use zed (ZedBoard) or zybo

(Zybo.) for <board>.

Create and Implement First Configuration Step 6

6-1. Create and implement the first Configuration.

6-1-1. Execute the following command.

source create_first_configuration.tcl

The script will do the following tasks:

• The script will optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

• Once the design is implemented (placed and routed), zoom in into the Device view to see
the pblock_rp_instance.

You will see the introduction of Partition Pins. These are the physical interface points
between static and reconfigurable logic. They are anchor points within an interconnect tile

Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-9
 xup@xilinx.com
 © copyright 2015 Xilinx

through which each IO of the reconfigurable module must route. They appear as white
boxes in the placed design view.

Figure 7. Partition pins in pblock_rp_instance

• Save the full design checkpoint.

write_checkpoint -force Implement/Config_add/top_route_design.dcp

• Save checkpoints for the reconfigurable module.

write_checkpoint -force -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

Checkpoint/rp_instance_add_route_design.dcp

At this point, a fully implemented partial reconfiguration design from which full and partial
bitstreams can be generated is ready. The static portion of this configuration must be

Reconfiguring Processor Peripheral Lab Lab Workbook

Zynq 3-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

used for all subsequent configurations, and to isolate the static design, the current
reconfigurable module must be removed.

6-2. After the first configuration is created, the static logic implementation will
be reused for the rest of the configurations. So it should be saved. But
before you save it, the loaded RM should be removed.

6-2-1. Execute the following command to update the design with the blackbox and write the checkpoint.

source lock_placement_with_blackbox.tcl

The script will do the following tasks:

• Clear out the existing RMs executing the following commands.

update_design -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance -black_box

Issuing this command will result in design changes including, the number of Fully Routed
nets (green) decreased, the number of Partially Routed nets (yellow) has increased, and
rp_instance may appear in the Netlist view as empty.

Figure 8. The design with unloaded module

• Lock down all placement and routing by executing the following command.

lock_design -level routing

Because no cell was identified in the lock_design command, the entire design in
memory (currently consisting of the static design with black boxes) is affected.

• Write out the remaining static-only checkpoint by executing the following command.

write_checkpoint -force Checkpoint/static_route_design.dcp

This static-only checkpoint would be used for any future configuration, but here, you
simply keep this design open in memory.

Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-11
 xup@xilinx.com
 © copyright 2015 Xilinx

Create Other Configurations Step 7

7-1. Read next set of RM dcp, create and implement the second configuration.

7-1-1. Execute the following command to create and implement the second configuration

source create_second_configuration.tcl

The script will do the following tasks:

• With the locked static design open in memory, read in post-synthesis checkpoint for the
second reconfigurable module.

read_checkpoint -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

Synth/reconfig_modules/rp_mult/add_mult_synth.dcp

• Optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

• Save the full design checkpoint.

write_checkpoint -force

Implement/Config_mult/top_route_design.dcp

• Save the checkpoint for the reconfigurable module.

write_checkpoint -force -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

Checkpoint/rp_instance_mult_route_design.dcp

• Close the project

close_project

7-2. Create the blanking configuration.

7-2-1. Execute the following command to create and implement the second configuration

source create_blanking_configuration.tcl

The script will do the following tasks:

• Open the static route checkpoint.

open_checkpoint Checkpoint/static_route_design.dcp

Reconfiguring Processor Peripheral Lab Lab Workbook

Zynq 3-12 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

• For creating the blanking configuration, use the update_design -buffer_ports
command to insert LUTs tied to constants to ensure the outputs of the reconfigurable
partition are not left floating.

update_design -buffer_ports -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

• Now place and route the design. There is no need to optimize the design.

place_design

route_design

The base (or blanking) configuration bitstream, when we generate in the next section, will
have no logic for either reconfigurable partition, simply outputs driven by ground. Outputs
can be tied to VCC if desired, using the HD.PARTPIN_TIEOFF property.

• Save the checkpoint in the Config_blank directory.

write_checkpoint -force

Implement/Config_blank/top_route_design.dcp

• Close the project

Close_project

Run PR_Verify Step 8

8-1. You must ensure that the static implementation, including interfaces to
reconfigurable regions, is consistent across all Configurations. To verify
this, you run the PR_Verify utility

8-1-1. Run the pr_verify command from the Tcl Console.

source verify_configurations.tcl

The script will perform the following tasks:

• execute the pr_verify command and then close the project:

pr_verify -initial Implement/Config_add/top_route_design.dcp -

additional {Implement/Config_mult/top_route_design.dcp

Implement/Config_blank/top_route_design.dcp}

You should see the message indicating the Config_add configuration is compatible with

Config_mult, and the Config_add configuration is compatible with Config_blank.

• Execute the following command to close the project.

close_project

Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-13
 xup@xilinx.com
 © copyright 2015 Xilinx

Generate Bit Files Step 9

9-1. After all the Configurations have been validated by PR_Verify, full and
partial bit files must be generated for the entire project

9-1-1. Generate the full configurations and partial bitstreams by executing the following tcl script.

source generate_bitstreams.tcl

9-1-2. The script will do the following tasks:

• Read the first configuration in the memory, using the command:

open_checkpoint Implement/Config_add/top_route_design.dcp

• Generate the full and partial bitstreams for this design.

write_bitstream -file Bitstreams/Config_add.bit

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap

-loadbit "up 0

Bitstreams/Config_add_pblock_rp_instance_partial.bit"

Bitstreams/add.bin

 close_project

Notice the three bitstreams will be created.

Config_add.bit – This is the power-up, full design bitstream.
Config_add_pblock_rp_instance_partial.bit – This is the partial bit file for the adder
module.
add.bin – This is the partial bit file for the adder module in the bin format.

• Generate full and partial bitstreams for the second configuration.

open_checkpoint Implement/Config_mult/top_route_design.dcp

write_bitstream -file Bitstreams/Config_mult.bit

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap

-loadbit "up 0

Bitstreams/Config_mult_pblock_rp_instance_partial.bit"

Bitstreams/mult.bin

close_project

The three files will be created.

• Generate a full bitstream with black boxes, plus blanking bitstreams for the reconfigurable
modules. Blanking bitstreams can be used to “erase” an existing configuration to reduce
power consumption.

open_checkpoint Implement/Config_blank/top_route_design.dcp

write_bitstream -file Bitstreams/blanking.bit

Reconfiguring Processor Peripheral Lab Lab Workbook

Zynq 3-14 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap

-loadbit "up 0

Bitstreams/blanking_pblock_rp_instance_partial.bit"

Bitstreams/blank.bin

close_project

Generate the Software Application Step 10

10-1. Open the PS design that was created in Step 1. Export the hardware design
and launch SDK.

10-1-1. Click on the Open Project link, browse to
c:/xup/PR/labs/reconfig_peripheral_lab/reconfig_peripheral_<board>_lab, select the
reconfig_peripheral<board>_lab.xpr and click OK to open the design created in Step 1.

10-1-2. Select File > Export > Export Hardware…

10-1-3. In the Export Hardware form, do not check the Include bitstream checkbox and click OK.

10-1-4. Select File > Launch SDK

10-1-5. Click OK to launch SDK.

The SDK program will open. Close the Welcome tab if it opens.

10-2. Create a Board Support Package enabling generic FAT file system library.

10-2-1. In SDK, select File > New > Board Support Package.

10-2-2. Click Finish with the default settings (with standalone operating system).

This will open the Software Platform Settings form showing the OS and libraries selections.

10-2-3. Select xilffs as the FAT file support is necessary to read the partial bit files.

Figure 10. Selecting the xilffs library support

10-2-4. Click OK to accept the settings and create the BSP.

Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-15
 xup@xilinx.com
 © copyright 2015 Xilinx

10-3. Create an application.

10-3-1. Select File > New > Application Project.

10-3-2. Enter TestApp as the Project Name, and for Board Support Package, choose Use Existing
(standalone_bsp_0 should be the only option).

10-3-3. Click Next, and select Empty Application and click Finish.

10-3-4. Expand the TestApp entry in the project view, right-click the src folder, and select Import.

10-3-5. Expand General category and double-click on File System.

10-3-6. Browse to c:\xup\PR\labs\reconfig_peripheral_lab\Sources\TestApp\src and click OK.

10-3-7. Select TestApp.c and click Finish to add the file to the project.

The program should compile successfully.

Open the source file and verify that the bin file size in the program listed matches the size you
made a note earlier (except it is 4x as the program uses the size in words). If different, then
change in the program and save it.

10-4. Create a zynq_fsbl application.

10-4-1. Select File > New > Application Project.

10-4-2. Enter zynq_fsbl as the Project Name, and for Board Support Package, choose Create New.

10-4-3. Click Next, select Zynq FSBL, and click Finish.

This will create the first stage bootloader application called zynq_fsbl.elf

10-5. Create a Zynq boot image.

10-5-1. Select Xilinx Tools > Create Zynq Boot Image.

10-5-2. Click the Browse button of the Output BIF file path field, browse to
c:\xup\PR\labs\reconfig_peripheral_lab, and then click Save with the output as the default filename.

10-5-3. Click on the Add button of the Boot image partitions, click the Browse button in the Add Partition
form, browse to c:\xup\PR\labs\reconfig_peripheral_lab\reconfig_peripheral_<board>_lab
\reconfig_peripheral_<board>_lab.sdk\zynq_fsbl\Debug directory, select zynq_fsbl.elf and
click Open. Use zed (ZedBoard) or zybo (Zybo) for <board>.

Note the partition type is bootloader.

Reconfiguring Processor Peripheral Lab Lab Workbook

Zynq 3-16 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 11. Adding FSBL partition

10-5-4. Click OK.

10-5-1. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to c:\xup\PR\labs\reconfig_peripheral_lab\Bitstreams directory, select
blanking.bit and click Open.

Note the partition type is datafile.

10-5-2. Click OK.

10-5-3. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to c:\xup\PR\labs\reconfig_peripheral_lab\reconfig_peripheral_
<board>_lab\reconfig_peripheral_< board>_lab.sdk\TestApp\Debug directory, select
TestApp.elf and click Open.

Note the partition type is datafile.

10-5-4. Click OK.

10-5-5. Make sure that the output path is c:\xup\PR\labs\reconfig_peripheral_lab and the filename is
BOOT.bin, and click Create Image.

10-5-6. Close the SDK program by selecting File > Exit.

Test the Design Step 11

11-1. Connect the board with micro-USB cable connected to the UART. Place the
board in the SD boot mode. Copy the generated BOOT.bin and the partial
bit files on the SD card and place the SD card in the board. Power On the
board.

11-1-1. Make sure that a micro-usb cable is connected to the UART port.

11-1-2. Make sure that the board is set to boot in SD card boot mode.

Lab Workbook Reconfiguring Processor Peripheral Lab

 www.xilinx.com/support/university Zynq 3-17
 xup@xilinx.com
 © copyright 2015 Xilinx

11-1-3. Using the Windows Explorer, copy the BOOT.bin from the c:/xup/PR/reconfig_peripheral_lab/
directory on to a SD Card.

11-1-4. Using the Windows Explorer, rename the three partial bin files in the Bitstream directory to
blank.bin, mult.bin, and add.bin and then copy them on to the SD Card

11-1-5. Place the SD Card in the board and power ON the board.

11-2. Start a terminal emulator program such as TeraTerm or HyperTerminal.
Select an appropriate COM port (you can find the correct COM number
using the Control Panel). Set the COM port for 115200 baud rate
communication.

11-2-1. Start a terminal emulator program such as TeraTerm or HyperTerminal.

11-2-2. Select the appropriate COM port (you can find the correct COM number using the Control Panel).

11-2-3. Set the COM port for 115200 baud rate communication.

11-2-4. Press BTN7 to display a menu.

11-2-5. Follow the menu and test various reconfigurations.

Typing 1, 2, or 3 at the menu will let you partially reconfigure the multiplication, addition, blanking
functionality respectively. Typing 4 will let you enter the operands and provide you the result.

Try various reconfigurations and enter operands after each reconfiguration to verify that the
design indeed works.

When blanking bitstream is loaded, the result is 0.

11-2-6. Close Vivado by selecting File > Exit.

11-2-7. Power OFF the board.

Conclusion
This lab showed you steps involved in creating a processor system using Vivado IPI. Full bitstream as
well as partial reconfiguration bitstreams were generated by going through the PR flow. You also learned
how to generate the boot image as well as how to convert the partial bit files to bin format. You verified
the functionality either using ZedBoard and/or Zybo.

