
Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-1
 xup@xilinx.com
 © copyright 2016 Xilinx

Fine-Tuning with Vivado HLS

Introduction

This lab introduces various techniques and directives of Vivado HLS which can be used in SDx to
improve design performance. The design under consideration performs a discrete cosine transformation
(DCT) on an 8x8 block of data.

Objectives

After completing this lab, you will be able to:
 Improve performance using the PIPELINE directive
 Understand the DATAFLOW directive functionality
 Apply memory partitioning techniques to improve data access

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 7 primary steps: You will create an SDx project with the provided dct example, carry
out the performance estimation of the design which estimates the acceleration of the dct function in
hardware, invoke Vivado HLS and resynthesize, apply the PIPELINE directive to improve performance,
improve the memory bandwidth by applying the PARTITION directive, apply the DATAFLOW directive,
and finally carry out the performance estimation of the improved model.

General Flow for this Lab

Step 1:

Create an
SDx Project

Step 2:

Performance
Estimation

Step 3:

Synthesize
the design in
Vivado HLS

Step 4:

Apply
PIPELINE
directive

Step 5:

Improve the
Memory

Bandwidth

Step 6:

Apply
DATAFLOW

directive

Step 7:
Performance
Estimation

of Optimized
Design

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Create an SDx Project Step 1

1-1. Launch SDx and create a project, called lab6, using the Empty Application
template and then using the provided source files, targeting the Zed or
Zybo board and Standalone OS.

1-1-1. Open SDx, select c:\xup\SDSoC\labs as the workspace and click OK.

1-1-2. Create a new project called lab6 targeting either zybo or zed board and Standalone OS, Empty
Application template.

1-2. Import the provided source files from source\lab6\src folder.

1-2-1. Right click on src under lab6 in the Project Explorer tab and select Import…

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse button, browse to c:\xup\SDSoC\source\lab6\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

Performance Estimation Step 2

2-1. Mark dct for the hardware acceleration. Run an initial performance estimate
of the hardware only.

2-1-1. Add the dct function operating at 100 MHz in the HW Function pane.

2-1-2. In the Options panel of the SDx Project Overview, click on the Estimate Performance checkbox.

2-1-3. Set the build configuration to Debug and then build the project.

2-1-4. After the build is over, you can see an initial report. This report contains a hardware-only estimate
summary and has a link that can be clicked to obtain the software run data, which updates the
report with comparison of hardware implementation versus the software-only information.

Note that the hardware accelerator performs the function in approximately 32000 clock cycles
(estimated) for Zybo, or 34500 clock cycles (estimated) for Zed.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-3
 xup@xilinx.com
 © copyright 2016 Xilinx

(a) Zed

(b) Zybo

Figure 1. Initial estimate of hardware only performance

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Synthesize the Design Using Vivado HLS Step 3

3-1. Analyze the source (dct.c) code.

3-1-1. Double-click on the dct.c under the source folder to open its content in the information pane.

Figure 2. The design under consideration

The top-level function dct, is defined at line 78. It implements a 2D DCT algorithm by first
processing each row of the input array via a 1D DCT then processing the columns of the resulting
array through the same 1D DCT. It calls read_data, dct_2d, and write_data functions.

The read_data function is defined at line 54 and consists of two loops – RD_Loop_Row and
RD_Loop_Col. The write_data function is defined at line 66 and consists of two loops which write
the result. The dct_2d function, defined at line 23, calls dct_1d function and performs a transpose.

Finally, the dct_1d function, defined at line 4, uses dct_coeff_table and implements a basic
iterative form of the 1D Type-II DCT algorithm. The following figure shows the function hierarchy
on the left-hand side, and the loops in the order they are executed, and the flow of data, on the
right-hand side.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-5
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 3. Design hierarchy and dataflow

3-2. Invoke Vivado HLS. Synthesize the design with the defaults. View the
synthesis results.

3-2-1. In the lab6 SDx Project Settings pane, click on () to invoke the Vivado HLS program.

The HLS launcher dialog box will appear.

3-2-2. Click OK.

3-2-3. In Vivado HLS, select Solution > Run C Synthesis > Active Solution or click on the button
to start the synthesis process.

This is just to view the log file.

3-2-4. When synthesis is completed, the results will be displayed in the Synthesis(Solution) tab.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

(a) Zed

(b) Zybo

Figure 4. Synthesis report showing performance estimate

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-7
 xup@xilinx.com
 © copyright 2016 Xilinx

Notice that the estimated period is 6.38 ns for Zed whereas 7.94 ns for Zybo. For Zed, the latency
is 3963 clocks and the interval is 3964. For Zybo, the latency is 2939 clocks and the interval is
2940. The Type is none since no pipeline was implemented.

3-2-5. Expand the Source folder and double-click on the dct.c to view the source file.

Figure 5. Project Explorer view

Note that the Synthesis Report section in the Explorer view shows dct_1d.rpt, dct_2d.rpt,
dct_csynth.rpt, read_data, and write_data entries.

3-2-6. Double-click on the directives.tcl entry and examine its content.

Notice that input and output ports are using single-port block RAM (RAM_1P), and the desired
latency is 1. You can verify this by selecting the dct.c tab and looking at the Directive tab. Also
notice the “%” for the directives which indicate that they are passed via the directives.tcl file.
Pragmas in the source code are indicated with a “#”.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 6. The Directive tab showing the directives passed from SDSoC

3-2-7. Select the Synthesis(solution) tab and then click on the Interface entry under the Outline tab.

The interface summary table will be displayed. It shows the six handshaking signals (ap_clk, …,
ap_ready) and then shows the single port bram ports for the input and output parameters.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-9
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 7. Interface summary showing single port bram interface for the input and output

3-2-8. Scroll through the Console tab to see the synthesis process log.

3-3. Create a new solution (solution1) copying the directives from the exisitng
solution (solution). Synthesize the design again. View the synthesis
results.

3-3-1. Select Project > New Solution or click on () from the tools bar buttons.

3-3-2. A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solution
selected).

3-3-3. With the source code file in focus, in the directives tab, under dct, right-click on the HLS
INTERFACE directive of the input port, select Remove Directive.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 8. Remove HLS Interface directive

3-3-4. Similarly, remove the HLS INTERFACE directive of the output port.

3-3-5. Click on the button to start the synthesis process.

3-3-6. When synthesis is completed, the results will be displayed in the Synthesis(Solution1) tab.

Notice that the performance estimations have changed slightly.

Note that the Synthesis Report section (under Solution1) in the Explorer view now only shows
dct_1d.rpt, dct_2d.rpt, and dct.rpt entries. The read_data and write_data functions reports are
not listed. This is because these two functions are inlined. Verify this by scrolling up into the
Vivado HLS Console view.

Figure 9. Inlining of read_data and write_data functions

3-3-7. The report also shows the top-level interface signals generated by the tools.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-11
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 10. Generated interface signals

The top-level function has input and output arrays without the HLS interface of bram directive. An
ap_memory interface is generated for each of them instead.

3-3-8. Open dct_1d2.rpt and dct_2d.rpt files either using the Explorer view or by using a hyperlink at the
bottom of the dct.rpt in the information view. The report for dct_2d clearly indicates that most of
this design cycles (3668) are spent doing the row and column DCTs. Also the dct_1d2 report
indicates that the latency is 209 clock cycles ((24+2)*8+1) for ZedBoard.

Apply PIPELINE Directive Step 4

4-1. Create a new solution by copying the previous solution settings. Apply the
PIPELINE directive to DCT_Inner_Loop, Xpose_Row_Inner_Loop,
Xpose_Col_Inner_Loop, RD_Loop_Col, and WR_Loop_Col. Generate the
solution and analyze the output.

4-1-1. Select Project > New Solution or click on () from the tools bar buttons.

4-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solution1
selected).

4-1-3. Make sure that the dct.c source is opened in the information pane and click on the Directive tab.

4-1-4. Select DCT_Inner_Loop of the dct_1d function in the Directive pane, right-click on it and select
Insert Directive...

4-1-5. A pop-up menu shows up listing various directives. Select the PIPELINE directive.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-12 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

4-1-6. Leave II (Initiation Interval) blank as Vivado HLS will attempt to schedule the design with II = 1;
one new input every clock cycle.

4-1-7. Click OK.

4-1-8. Similarly, apply the PIPELINE directive to Xpose_Row_Inner_Loop and
Xpose_Col_Inner_Loop of the dct_2d function, and RD_Loop_Col of the read_data function,
and WR_Loop_Col of the write_data function. At this point, the Directive tab should look like as
follows.

Figure 11. PIPELINE directive applied

4-1-9. Click on the Synthesis button.

4-1-10. When the synthesis is completed, select Project > Compare Reports… or click on to
compare the two solutions.

4-1-11. Select Solution1 and Solution2 from the Available Reports, click on the Add>> button, and then
click OK.

4-1-12. Observe that the latency has reduced from 3959 to 1851 clock cycles for Zed or 2935 to 1723
clock cycles for Zybo.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-13
 xup@xilinx.com
 © copyright 2016 Xilinx

(a) Zed (b) Zybo

Figure 12. Performance comparison after pipelining

4-1-13. Scroll down in the comparison report to view the resources utilization. Observe that the LUTs
utilization increased whereas BRAM and DSP48E remained same.

(a) Zed (b) Zybo

Figure 13. Resources utilization after pipelining

4-2. Open the Analysis perspective and determine where most of the clock
cycles are spent, i.e. where are the large latencies.

4-2-1. Click on the Analysis perspective button ().

4-2-2. In the Module Hierarchy, select the dct entry and observe the RD_Loop_Row_RD_Loop_Col
and WR_Loop_Row_WR_Loop_Col entries. These are two nested loops, flattened, and given
the new names. The new names are formed by appending the inner loop name to the outer loop
name. You can also verify this by looking in the Console view message. Notice that the
DCT_Outer_Loop could not be flattened.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-14 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 14. The console view content indicating loops flattening

(a) Zed

(b) Zybo

Figure 15. The performance profile at the dct function level

4-2-3. In the Module Hierarchy tab, expand the dct hierarchy completely. Notice that the most of the
latency occurs is in dct_2d function. Select the dct_1d2 entry.

4-2-4. In the Performance Profile tab, select the DCT_Inner_Loop entry

4-2-5. In the Performance view, right-click on the node_60 (write) block in the C3 state, and select Goto
Source. Notice that line 19 is highlighted which is preventing the flattening of the
DCT_Outer_Loop.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-15
 xup@xilinx.com
 © copyright 2016 Xilinx

(a) Zed

(b) Zybo

Figure 16. Understanding what is preventing DCT_Outer_Loop flattening

4-2-6. Switch to the Synthesis perspective.

4-3. Create a new solution by copying the previous solution settings. Apply
fine-grain parallelism of performing multiply and add operations of the
inner loop of dct_1d using PIPELINE directive by moving the PIPELINE
directive from inner loop to the outer loop of dct_1d. Generate the solution
and analyze the output.

4-3-1. Select Project > New Solution.

4-3-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution2 selected).

4-3-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

4-3-4. With the source code open, in the Directive pane, select the PIPELINE directive of the
DCT_Inner_Loop of the dct_1d function, right-click on it and select Remove Directive.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-16 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

4-3-5. Click No, if asked, to not to remove the label.

4-3-6. In the Directive pane again, select the DCT_Outer_Loop of the dct_1d function, right-click on it
and select Insert Directive...

4-3-7. A pop-up menu shows up listing various directives. Select the PIPELINE directive

4-3-8. Click Yes and then OK.

Figure 17. PIPELINE directive applied to DCT_Outer_Loop

By pipelining an outer loop, all inner loops will be unrolled automatically (if legal), so there is no
need to explicitly apply an UNROLL directive to DCT_Inner_Loop. Simply move the pipeline to
the outer loop: the nested loop will still be pipelined but the operations in the inner-loop body will
operate concurrently.

4-3-9. Click on the Synthesis button.

4-3-10. When the synthesis is completed, select Project > Compare Reports… to compare the two
solutions.

4-3-11. Select Solution2 and Solution3 from the Available Reports, click on the Add>> button, and then
click OK.

4-3-12. Observe that the latency reduced from 1851 to 875 for Zed whereas 1723 to 859 for Zybo.

(a) Zed (b) Zybo

Figure 18. Performance comparison after pipelining

4-3-13. Scroll down in the comparison report to view the resources utilization. Observe that the utilization
of all resources (except BRAM) increased. Since the DCT_Inner_Loop was unrolled, the parallel
computation requires 8 DSP48E.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-17
 xup@xilinx.com
 © copyright 2016 Xilinx

(a) Zed (b) Zybo

Figure 19. Resources utilization after pipelining

4-3-14. Open the dct_1d2 report and observe that the pipeline initiation interval (II) is four (4) cycles, not
one (1) as might be hoped, and there are now 8 BRAMs being used for the coefficient table.

Looking closely at the synthesis log, notice that the coefficient table was automatically partitioned,
resulting in 8 separate ROMs: this helped reduce the latency by keeping the unrolled computation
loop fed, however the input arrays to the dct_1d function were not automatically partitioned.

(a) Zed

(b) Zybo

Figure 20. Increased resource utilization of dct_1d

Figure 21. Automatic partitioning of dct_coeff_table

Figure 22. Initiation interval of 4

4-4. Perform design analysis by switching to the Analysis perspective and
looking at the dct_1d performance view.

4-4-1. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct_1d
entry.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-18 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

4-4-2. Expand, if necessary, the Performance Profile tab entries and notice that the DCT_Outer_Loop
is now pipelined and there is no DCT_Inner_Loop entry.

(a) Zed

(b) Zybo

Figure 23. DCT_Outer_Loop flattening

4-4-3. Select the Resource tab, expand the Memory Ports entry and observe that the memory accesses
on BRAM src are being used to the maximum in every clock cycle. (At most a BRAM can be dual-
port and both ports are being used). This is a good indication the design may be bandwidth
limited by the memory resource.

(a) Zed

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-19
 xup@xilinx.com
 © copyright 2016 Xilinx

(b) Zybo

Figure 24. The Resource tab

4-4-4. Switch to the Synthesis perspective.

Improve Memory Bandwidth Step 5

5-1. Create a new solution by copying the previous solution (Solution3) settings.
Apply ARRAY_PARTITION directive to buf_2d_in of dct (since the
bottleneck was on src port of the dct_1d function, which was passed via
in_block of the dct_2d function, which in turn was passed via buf_2d_in of
the dct function) and col_inbuf of dct_2d. Generate the solution.

5-1-1. Select Project > New Solution to create a new solution.

5-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution3 selected).

5-1-3. With dct.c open, select buf_2d_in array of the dct function in the Directive pane, right-click on it
and select Insert Directive...

The buf_2d_in array is selected since the bottleneck was on the src port of the dct_1d function.
This array was passed via in_block of the dct_2d function, which in turn was passed via
buf_2d_in of the dct function).

5-1-4. A pop-up menu shows up listing various directives. Select the ARRAY_PARTITION directive.

5-1-5. Make sure that the type is complete. Enter 2 in the dimension field and click OK.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-20 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 25. Applying ARRAY_PARTITION directive to memory buffer

5-1-6. Similarly, apply the ARRAY_PARTITION directive with dimension of 2 to the col_inbuf array of
the dct_2d function.

5-1-7. Click on the Synthesis button.

5-1-8. When the synthesis is completed, select Project > Compare Reports… to compare the two
solutions.

5-1-9. Select Solution3 and Solution4 from the Available Reports, and click on the Add>> button.

5-1-10. Observe that the latency reduced from 875 to 509 for Zed and from 859 to 493 for Zybo.

(a) Zed (b) Zybo

Figure 26. Performance comparison after array partitioning

5-1-11. Scroll down in the comparison report to view the resources utilization. Observe the increase in
the FF resource utilization (almost double) and BRAM_18K utilization reduced as the two
selected arrays were completely partitioned.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-21
 xup@xilinx.com
 © copyright 2016 Xilinx

(a) Zed (b) Zybo

Figure 27. Resources utilization after array partitioning

5-1-12. Expand the Loop entry in the dct.rpt entry and observe that the Pipeline II is now 1.

(a) Zed

(b) Zybo

Figure 28. II=1 achieved

Apply DATAFLOW Directive Step 6

6-1. Create a new solution by copying the previous solution (Solution4) settings.
Apply the DATAFLOW directive to improve the throughput. Generate the
solution and analyze the output.

6-1-1. Select Project > New Solution.

6-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution4 selected).

6-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

6-1-4. Select function dct in the directives pane, right-click on it and select Insert Directive...

6-1-5. Select the DATAFLOW directive to improve the throughput.

6-1-6. Click on the Synthesis button.

6-1-7. When the synthesis is completed, the synthesis report is automatically opened.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-22 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

6-1-8. Observe that dataflow type pipeline throughput is listed in the Performance Estimates.

(a) Zed (b) Zybo

Figure 29. Performance estimate after DATAFLOW directive applied

o The Dataflow pipeline throughput indicates the number of clock cycles between each set of
inputs reads (interval parameter). If this value is less than the design latency it indicates the
design can start processing new inputs before the currents input data are output.

o Note that the dataflow is only supported for the functions and loops at the top-level, not those
which are down through the design hierarchy. Only loops and functions exposed at the top-
level of the design will get benefit from dataflow optimization.

6-1-9. Look at the console view and notice that dct_coeff_table is automatically partitioned in dimension
2. The buf_2d_in and col_inbuf arrays are partitioned as we had applied the directive in the
previous run. The dataflow is applied at the top-level which created channels between top-level
functions read_data, dct_2d, and write_data.

Figure 30. Console view of synthesis process after DATAFLOW directive applied

6-2. Save the directives as pragmas in the dct.c file and exit Vivado HLS.

6-2-1. Double-click on the directives.tcl entry under solutions5 > constraints.

Figure 31. The applied directives

6-2-2. Since SDx does not use the directives.tcl file, we will need to move all the desired directives and
implement them as pragmas in the dct.c source file.

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-23
 xup@xilinx.com
 © copyright 2016 Xilinx

6-2-3. With dct.c open and in focus, in the Directives tab, select one directive at a time, right-click on it,
select and Modify Directive.

6-2-4. Select Source file as the destination and click OK.

Figure 32. Move directives to source file

When all eleven directives are transferred to the source file, you should see #pragma directives
on lines 14, 29, 43, 56, 69, 83, 90, 91, 92, 93, and 96.

6-2-5. Select File > Save.

6-2-6. Close Vivado HLS by selecting File > Exit.

 Performance Estimation of Optimized Model Step 7

7-1. Clean the project and re-estimate the performance.

7-1-1. Right-click the top-level folder for the project and click on Clean Project in the menu.

7-1-2. Build the project.

7-1-3. After the build is over, you can see an initial report. This report contains a hardware-only estimate
summary.

Fine-Tuning with Vivado HLS Lab Workbook

 Zynq 6-24 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

(a) Zed

(b) Zybo

Figure 33. Initial estimate of hardware only performance of the optimized code

Lab Workbook Fine-Tuning with Vivado HLS

 www.xilinx.com/university Zynq 6-25
 xup@xilinx.com
 © copyright 2016 Xilinx

The Summary section shows that the estimated HW acceleration is 14591 compared to the initial
hardware acceleration of 34511 for Zed, and 14895 compared to the initial hardware accelerator
of 27469, yielding a 2.4x (for Zed) and 1.84x (for Zybo) improvement.

Conclusion

In this lab, you learned various techniques to improve the performance using Vivado HLS. These
directives can be used with SDSoc through pragma statements. The PIPELINE directive when applied to
outer loop will automatically cause the inner loop to unroll. When a loop is unrolled, resources utilization
increases as operations are done concurrently. Partitioning memory may improve performance but will
increase BRAM utilization. When the DATAFLOW directive is applied, the default memory buffers (of
ping-pong type) are automatically inserted between the top-level functions and loops. The Analysis
perspective and console logs can provide insight on what is going on.

