Lab Workbook Fine-Tuning with Vivado HLS

Fine-Tuning with Vivado HLS

Introduction

This lab introduces various techniques and directives of Vivado HLS which can be used in SDx to
improve design performance. The design under consideration performs a discrete cosine transformation
(DCT) on an 8x8 block of data.

Objectives

After completing this lab, you will be able to:

e Improve performance using the PIPELINE directive

e Understand the DATAFLOW directive functionality

e Apply memory partitioning techniques to improve data access

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 7 primary steps: You will create an SDx project with the provided dct example, carry
out the performance estimation of the design which estimates the acceleration of the dct function in
hardware, invoke Vivado HLS and resynthesize, apply the PIPELINE directive to improve performance,
improve the memory bandwidth by applying the PARTITION directive, apply the DATAFLOW directive,
and finally carry out the performance estimation of the improved model.

General Flow for this Lab

Step 1 Step 2: Step 3: Step 4:

Create an Performance Synthesize Apply

SDx Project |:> Estimation :> the design in :> P(jIPEL!NE :>

Vivado HLS irective

Step 5: Step 6: Step 7:

Improve the Apply Performance
Memory :> DATAFLOW :> Estimation

Bandwidth directive of gz:zlnzed

v www.xilinx.com/university Zynq 6-1
i‘ XI LINXJ Xup@xilinx.com

© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

Create an SDx Project Step 1

1-1. Launch SDx and create a project, called lab6, using the Empty Application
template and then using the provided source files, targeting the Zed or
Zybo board and Standalone OS.

1-1-1. Open SDx, select c:\xup\SDSoC\labs as the workspace and click OK.

1-1-2. Create a new project called lab6 targeting either zybo or zed board and Standalone OS, Empty
Application template.

1-2. Import the provided source files from source\lab6\src folder.

1-2-1. Right click on src under lab6 in the Project Explorer tab and select Import...

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse button, browse to c¢:\xup\SDSoC\source\lab6\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

Performance Estimation Step 2

2-1. Mark dct for the hardware acceleration. Run an initial performance estimate
of the hardware only.

2-1-1. Add the dct function operating at 100 MHz in the HW Function pane.
2-1-2. In the Options panel of the SDx Project Overview, click on the Estimate Performance checkbox.
2-1-3. Set the build configuration to Debug and then build the project.

2-1-4. After the build is over, you can see an initial report. This report contains a hardware-only estimate
summary and has a link that can be clicked to obtain the software run data, which updates the
report with comparison of hardware implementation versus the software-only information.

Note that the hardware accelerator performs the function in approximately 32000 clock cycles
(estimated) for Zybo, or 34500 clock cycles (estimated) for Zed.

Zynq 6-2 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2016 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

=l SDSoC Repor.. % 10 = B

Performance and resource estimation report for the 'lab6’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time].
If the HW function latency and data transfer size at run-time is smaller than such assumptions,
the performance estimation will be more pessimistic than the actual performance.

Details
Performance estimates for 'dct in dct_test.c:30° function

HW accelerated (Estimated cycles) 34511

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 1 220 045
BRAM 2 140 143
LUT 355 53200 0.67
FF 280 106400 0.26
(a) Zed

Performance and resource estimation report for the 'lab6’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time). If
the HW function latency and data transfer size at run-time is smaller than such assumptions, the
performance estimation will be more pessimistic than the actual performance.

Details
Performance estimates for 'dct in dct_test.c:30° function

HW accelerated (Estimated cycles) 27469

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 1 80 125
BRAM 2 60 | 333
LuT 355 17600 | 202
FF 248 35200 07
(b) Zybo

Figure 1. Initial estimate of hardware only performance

v www.xilinx.com/university Zynq 6-3
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

Synthesize the Design Using Vivado HLS Step 3
3-1. Analyze the source (dct.c) code.
3-1-1. Double-click on the dct.c under the source folder to open its content in the information pane.
78 void dct(short input[M], short output[N])
79 {
80
81 short buf_2d_in[DCT_STZE][DCT_SIZE];
82 short buf_2d out[DCT_SIZE][DCT_SIZE];
83
84 // Read input data. Fill the internal buffer.
85 read_data(input, buf_2d _in);
86
87 dct_2d(buf_2d in, buf_2d out);
88
89 [/ Write out the results.
99 write data(buf_2d out, output);
91}
Figure 2. The design under consideration
The top-level function dct, is defined at line 78. It implements a 2D DCT algorithm by first
processing each row of the input array via a 1D DCT then processing the columns of the resulting
array through the same 1D DCT. It calls read_data, dct_2d, and write_data functions.
The read_data function is defined at line 54 and consists of two loops — RD_Loop_Row and
RD_Loop_Col. The write_data function is defined at line 66 and consists of two loops which write
the result. The dct_2d function, defined at line 23, calls dct_1d function and performs a transpose.
Finally, the dct_1d function, defined at line 4, uses dct_coeff_table and implements a basic
iterative form of the 1D Type-Il DCT algorithm. The following figure shows the function hierarchy
on the left-hand side, and the loops in the order they are executed, and the flow of data, on the
right-hand side.
Zynqg 6-4 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

Hierarchy Loops Dataflow
RD_Loop_Row: l
RD_Loop_Col:
}
}

Row_DCT_Loop:
DCT_Outer_Loop:
DCT_Inner_Loop:
}
}

}
Xpose_Row_Outer_Loop:
Xpose_Row_Inner_Loop:

}

}
Col_DCT_Loop:
DCT_Outer_Loop:
DCT _Inner_Loop:
}
}
}
Xpose_Col_Outer_Loop:
Xpose_Col_Inner_Loop:
}
}
WR_Loop_Row:
WR_Loop_Col:

) |

Figure 3. Design hierarchy and dataflow

3

%+

L

-

3-2. Invoke Vivado HLS. Synthesize the design with the defaults. View the
synthesis results.

3-2-1. Inthe lab6 SDx Project Settings pane, click on (‘q’) to invoke the Vivado HLS program.
The HLS launcher dialog box will appear.

3-2-2. Click OK.

3-2-3. In Vivado HLS, select Solution > Run C Synthesis > Active Solution or click onthe ¥ button
to start the synthesis process.
This is just to view the log file.

3-2-4. When synthesis is completed, the results will be displayed in the Synthesis(Solution) tab.

(' XILINX www.xilinx.com/university Zynq 6-5

- © xup@xilinx.com

© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS

Lab Workbook

=l Synthesis(solution) &3

Synthesis Report for ‘dct’

General Information

Date: Sun Jan 01 19:43:13 2017

Version: 2016.3 (Build 1721985 on Tue Nov 29 18:45:36 MST 2016)
Project: dct

Solution: solution

Product family: zyng
Target device: xc7z020clg484-1

Performance Estimates

= Timing (ns)

El Summary
Clock Target Estimated Uncertainty
lapck 1000 6.38 1.25 |
= Latency (clock cycles)
El Summary

Latency Interval
min max min max Type
3963 3963 3964 3964 none |

(a) Zed

Synthesis Report for ‘dct’

‘General Information

Date: Mon Jan 02 13:44:18 2017

Version: 2016.3 (Build 1721985 on Tue Nov 29 18:45:36 MST 2016)
Project; dct

Solution: solution

Product family: zyng
Target device: xc/z010clg400-2

Performance Estimates
= Timing (ns)
= Summary

Clock Target Estimated Uncertainty
| ap.ck 1000 7.94 1.25 |

| Latency (clock cycles)

m

B Summary
Latency Interval
min max min max Type
| 2939 2939 2940 2940 none |

(b) Zybo
Figure 4. Synthesis report showing performance estimate

Zynq 6-6 www.xilinx.com/university
xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Fine-Tuning with Vivado HLS

Notice that the estimated period is 6.38 ns for Zed whereas 7.94 ns for Zybo. For Zed, the latency
is 3963 clocks and the interval is 3964. For Zybo, the latency is 2939 clocks and the interval is
2940. The Type is none since no pipeline was implemented.

3-2-5. Expand the Source folder and double-click on the dct.c to view the source file.

4 5 Source
f= Test Bench
a = solution
4 & constraints
“& script.tcl
4 (= impl
> 0 ip
> = vhdl
4 = syn
4 (= report
£l dct_1d4_csynth.rpt
=l det_2d_csynth.rpt
£l dct_csynth.rpt
=l read_data_csynth.rpt
2l write_data_csynth.rpt

» (= systemc
> = verilog
> = vhdl

Figure 5. Project Explorer view

Note that the Synthesis Report section in the Explorer view shows dct_1d.rpt, dct_2d.rpt,
dct_csynth.rpt, read_data, and write_data entries.

3-2-6. Double-click on the directives.tcl entry and examine its content.

Notice that input and output ports are using single-port block RAM (RAM_1P), and the desired
latency is 1. You can verify this by selecting the dct.c tab and looking at the Directive tab. Also
notice the “%" for the directives which indicate that they are passed via the directives.tcl file.
Pragmas in the source code are indicated with a “#".

v www.xilinx.com/university Zynq 6-7
i‘ XI LINX” Xup@xilinx.com

© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

8= Outline | i Directive 2

4 @ dct 1d
=1 dect_coeff_table
4 5" DCT_Quter_Loop
% DCT_Inner_Loop
4 @ dct 2d
=[1 row_outbuf
=[] col_outbuf

#[1 col_inbuf
%" Row_DCT _Loop
4 ' ¥pose_Row_Outer_Loop
4 Xpose_Row_Inner_Loop
%" Col_DCT_Loop
4 " Xpose_Col_Outer_Loop
%" Xpose_Col_Inner_Loop
4 @ read data
4 %' RD_Loop_Row
%" RD_Loop_Col
4 @ write_data
%" WR_Loop_Row
%" WR_Loop_Col
4 @ dct
[% HLS LATENCY min=1
@ input
I% HLS RESOURCE variable=input core:RAM_lPI
9 HLS INTERFACE bram port=input
© output
I% HLS RESOURCE variable=output core:RAM_lPI
% HLS INTERFACE bram port=output
#[1 buf 2d_In
=[] buf_2d_out

[

Figure 6. The Directive tab showing the directives passed from SDSoC

3-2-7. Select the Synthesis(solution) tab and then click on the Interface entry under the Outline tab.

The interface summary table will be displayed. It shows the six handshaking signals (ap_clk, ...,
ap_ready) and then shows the single port bram ports for the input and output parameters.

Zynq 6-8 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook

Fine-Tuning with Vivado HLS

3-2-8.

3-3-1.

3-3-2.

3-3-3.

=l Synthesis{solution) 2

Interface

- Summary

RTL Ports
ap_clk
ap_rst_n
ap_start
ap_done
ap_idle
ap_ready
input_r_Addr_A
input_r_EM_A
input_r_WEN_A
input_r_Din_A
input_r_Dout_A
input_r_Clk_A
input_r_Rst_A
output_r_Addr_A
output_r_EM_A
output_r WEN_A
output_r_Din_A
output_r_Dout_A
output_r_Clk_A
output_r_Rst_A

[€ dctc

Bits

= e e

32

16
16

32

16
16

' directives.tcl

Protocol
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs

bram
bram
bram
bram
bram
bram
bram
bram
bram
bram
bram
bram

bram

bram

Source Object

dct

dct

dct

dct

dct

dct
input_r
input_r
input_r
input_r
input_r
input_r
input_r
output_r
output_r
output_r
output_r
output_r
output_r
output_r

CType
return value
return value
return value
return value
return value
return value

array
array
array
array
array
array
array
array
array
array
array
array
array
array

Figure 7. Interface summary showing single port bram interface for the input and output

Scroll through the Console tab to see the synthesis process log.

Create a new solution (solutionl) copying the directives from the exisitng
solution (solution). Synthesize the design again. View the synthesis
results.

Select Project > New Solution or click on (te) from the tools bar buttons.

A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solution
selected).

With the source code file in focus, in the directives tab, under dct, right-click on the HLS
INTERFACE directive of the input port, select Remove Directive.

& XILINX.

www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

Zynqg 6-9

Fine-Tuning with Vivado HLS Lab Workbook

B= Qutline | [J% Directive &2 = 0
4 @ dct *
O HLS LATEMCY min=1
@ input

O HLS RESOURCE variable=input core=RAM_LP
O HLS INTERFACE bram port=input

@ output ¥ Remove Directive

b HLS RESOURCE variabresvoporcoresrrmmre————
O HLS INTERFACE bram port=output

buf_2d_in
buf_2d_out

x[1
®[1

Figure 8. Remove HLS Interface directive

3-3-4. Similarly, remove the HLS INTERFACE directive of the output port.

3-3-5. Click onthe ¥ button to start the synthesis process.

3-3-6. When synthesis is completed, the results will be displayed in the Synthesis(Solutionl) tab.
Notice that the performance estimations have changed slightly.

Note that the Synthesis Report section (under Solutionl) in the Explorer view now only shows
dct_1d.rpt, dct_2d.rpt, and dct.rpt entries. The read_data and write_data functions reports are
not listed. This is because these two functions are inlined. Verify this by scrolling up into the
Vivado HLS Console view.

INFO: | [XFORM 203-602| Inlining function |'read_data' into 'dect® (../../../src/dct.c:85) automatically.
INFO: | [XFORM 203-682] Inlining function |'write data® into ‘dect’ (../../../src/dct.c:98) automatically.
INFO:| [HLS 200-111] Finished Checking Syinthesizability Time (s): cpu = 00:00:01 ; elapsed = 00:00:05 .
INFO:| [XFORM 2083-602] Inlining function |'read_data’' into 'dct’ (../../../src/dct.c:85) automatically.
INFO: | [XFORM 283-602 Inlining function |'write_data® into ‘dect’ (../../../src/dct.c:98) automatically.
INFO: [HLS 200-111] Finished Pre-synthesis Time (s): cpu = ©9:00:01 ; elapsed = 00:00:05 . Memory (MB)

Figure 9. Inlining of read_data and write_data functions

3-3-7. The report also shows the top-level interface signals generated by the tools.

Zyng 6-10 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

Interface
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs dct return value
ap_rst_n in 1 ap_ctrl_hs dct return value
ap_start in 1 ap_ctrl_hs dct return value
ap_done out 1 ap_ctrl_hs dct return value
ap_idle out 1 ap_ctrl_hs dct return value
ap_ready out 1 ap_ctrl_hs dct return value
input_r_address0 out 6 ap_memory input_r array
input_r_ce0 out 1 ap_memory input_r array
input_r_g0 in 16 ap_memory input_r array
output_r_address0 out 6 ap_memory output_r array
output_r_cel out 1 ap_memory output_r array
output_r_we0 out 1 ap_memory output_r array
output_r_d0 out 16 ap_memory output_r array

Figure 10. Generated interface signals

The top-level function has input and output arrays without the HLS interface of bram directive. An
ap_memory interface is generated for each of them instead.

3-3-8. Open dct_1d2.rpt and dct_2d.rpt files either using the Explorer view or by using a hyperlink at the
bottom of the dct.rpt in the information view. The report for dct_2d clearly indicates that most of
this design cycles (3668) are spent doing the row and column DCTs. Also the dct_1d2 report
indicates that the latency is 209 clock cycles ((24+2)*8+1) for ZedBoard.

Apply PIPELINE Directive Step 4

4-1. Create a new solution by copying the previous solution settings. Apply the
PIPELINE directive to DCT_Inner_Loop, Xpose_Row_Inner_Loop,
Xpose_Col_Inner_Loop, RD_Loop_Col, and WR_Loop_Col. Generate the
solution and analyze the output.

4-1-1. Select Project > New Solution or click on (ta) from the tools bar buttons.

4-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solutionl
selected).

4-1-3. Make sure that the dct.c source is opened in the information pane and click on the Directive tab.

4-1-4. Select DCT_Inner_Loop of the dct_1d function in the Directive pane, right-click on it and select
Insert Directive...

4-1-5. A pop-up menu shows up listing various directives. Select the PIPELINE directive.

(' XILINX www.xilinx.com/university Zyng 6-11

Xup@xilinx.com
© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

4-1-6. Leave Il (Initiation Interval) blank as Vivado HLS will attempt to schedule the design with Il = 1;
one new input every clock cycle.

4-1-7. Click OK.

4-1-8. Similarly, apply the PIPELINE directive to Xpose_Row_Inner_Loop and
Xpose_Col_Inner_Loop of the dct_2d function, and RD_Loop_Col of the read_data function,
and WR_Loop_Col of the write_data function. At this point, the Directive tab should look like as
follows.

4 @ dct_1d

#1 det_coeff_table
a %' DCT_Outer_Loop

4 %' DCT_Inner_Loop
% HLS PIPELINE

4 @ dct 2d

“[1 row_outbuf

=[1 col_outbuf

=[1 col_inbuf

%" Row_DCT_Loop

%" Xpose_Row_Outer_Loop

4 ' Xpose_Row_Inner_Loop
%% HLS PIPELINE

%" Col_DCT_Loop

a %' Xpose_Col_Outer_Loop

4 =" Xpose_Col_Inner_Loop
% HLS PIPELINE

4 @ read data

4 &' RD_Loop_Row

4 % RD_Loop_Col
% HLS PIPELINE

4 @ write data

[9

4 ' WR_Loop_Col
%% HLS PIPELINE

4 @ dct

Figure 11. PIPELINE directive applied

4-1-9. Click on the Synthesis button.

4-1-10. When the synthesis is completed, select Project > Compare Reports... or click on 5 to
compare the two solutions.

4-1-11. Select Solutionl and Solution2 from the Available Reports, click on the Add>> button, and then
click OK.

4-1-12. Observe that the latency has reduced from 3959 to 1851 clock cycles for Zed or 2935 to 1723
clock cycles for Zybo.

Zyng 6-12 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook

Fine-Tuning with Vivado HLS

Performance Estimates

= Timing (ns)
Clock solution2 solutionl
ap_clk Target 10.00 10.00

Estimated 7.68 6.38
-l Latency (clock cycles)

solution?2 solutionl

Latency min 1851 3959

max 1851 3959
Interval min 1852 3960

max 1852 3960

(&) Zed

Performance Estimates

= Timing (ns)
Clock solution2 solutionl
ap_clk Target 10.00 10.00
Estimated 7.94 7.94
-1 Latency (clock cycles)
solution?2 solutionl
Latency min 1723 2935
max 1723 2935
Interval min 1724 2936
max 1724 2936

(b) Zybo

Figure 12. Performance comparison after pipelining

4-1-13. Scroll down in the comparison report to view the resources utilization. Observe that the LUTs
utilization increased whereas BRAM and DSP48E remained same.

Utilization Estimates

Utilization Estimates

solution2 solutionl solution2 solutionl
BRAM_18K 5 5 BRAM_18K 5 5
DSP48E 1 1 DSP48E 1 1
FF 256 272 FF 223 240
LUT 462 353 LUT 461 353

(a) Zed

(b) Zybo

Figure 13. Resources utilization after pipelining

4-2. Open the Analysis perspective and determine where most of the clock
cycles are spent, i.e. where are the large latencies.

4-2-1.

4-2-2.

Click on the Analysis perspective button (&d7).

In the Module Hierarchy, select the dct entry and observe the RD_Loop_Row_RD_Loop_Col

and WR_Loop_Row_WR_Loop_Col entries. These are two nested loops, flattened, and given
the new names. The new names are formed by appending the inner loop name to the outer loop
name. You can also verify this by looking in the Console view message. Notice that the

DCT_Outer_Loop could not be flattened.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com

Zyng 6-13

© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

@I [HLS-18] Checking synthesizability ...

@I [XFORM-602] Inlining function 'read_data' into 'dct' (../../../src/dct.c:85) automatically.
@I [XFORM-602] Inlining function 'write_data' into 'dct’ (../../../fsrc/dct.c:98) automatically.
@I [XFORM-602] Inlining function 'read_data' into 'dct' (../../../src/dct.c:85) automatically.
@I [XFORM-602] Inlining function 'write_data' into 'dct’ (../../../src/dct.c:98) automatically.

@I [XFORM-541] |Flattening a loop nest 'RD_Loop Row' (../../../src/dct.c:59:67) in function 'dct’.
@I [XFORM-541] |Flattening a loop nest 'WR_Loop Row' (../../../src/dct.c:71:67) in function 'dct’.
@I [XFORM-541] |Flattening a loop nest 'Xpose Row Outer_Loop" (../../../src/dct.c:38:1) in function "dct_2d].
@I [XFORM-541] |Flattening a loop nest 'Xpose Col Outer_Loop" (../../../src/dct.c:49:1) in function "dct_2d].
@W [XFORM-542] |Cannot flatten a loop nest 'DCT_Outer_Loop' (../../../src/dct.c:13:67) in function 'dct_1d'|:
the outer loop is not a perfect loop because there is nontrivial logic in the loop latch.

@I [HLS-111] Elapsed time: 6.873 seconds; current memory usage: 90.2 MB.
4

Figure 14. The console view content indicating loops flattening

#| Module Hierarchy E = 8
BRAM DSP FF LUT Latency Interval Pipeline type
4| ® dct 5 1 256 462 1851 1852 none
4 o dct 2d 3 1 195 322 1718 1718 none
e dct_ 0 1 117 123 97 97 none
£F Performance Profile 2 | . Resource Profile E = 8

Pipelined Latency Initiation Interval Iteration Latency Trip count

4 ® dct - 1851 1852 - -
@ RD_Loop_Row_RD_Loop_Col vyes 64 1 2 64
e WE_Loop_Row_WR_Loop_Col yes b4 1 64
(a) Zed
¥ Module Hierarchy B T 4
BRAM DSP FF LUT Latency Interval Pipeline type
4| e dct 5 1 223 461 1723 1724 none
4 o dct_2d 3 1 162 321 1580 1590 none
e dct_1dZz 0 1 84 122 89 89 none
£F Performance Profile 22 | Resource Profile B = 8

Pipelined Latency Initiation Interval [teration Latency Trip count

4 @ dct - 1723 1724 - -
@ RD_Loop_Row_RD_Loop_Col yes 64 1 2 64
e WR Loop Row WR Loop Caol ves 64 1 64
(b) Zybo

Figure 15. The performance profile at the dct function level

4-2-3. In the Module Hierarchy tab, expand the dct hierarchy completely. Notice that the most of the
latency occurs is in dct_2d function. Select the dct_1d2 entry.

4-2-4. Inthe Performance Profile tab, select the DCT_Inner_Loop entry

4-2-5. In the Performance view, right-click on the node_60 (write) block in the C3 state, and select Goto
Source. Notice that line 19 is highlighted which is preventing the flattening of the
DCT_Outer_Loop.

Zyng 6-14 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

2] Module Hierarchy F B = O |4 dctc 2l Synthesis(solut =1 Synthesis(solut 2l Synthesis(solut = Syr
BRAM DSP FF LUT Lat Interval Pipeli
atenyj feralghinelnelyps Current Module : dct > det 2d > det 1d2
4 o dct 5 1 256 462 1851 1852 none
4edazd 3 1 105322 1718 1718 none loneratiom\Control S...] co | ¢1 | o | ca | ca
e dct 1d2 0 1 117 123 97 97 none 1 1 21 read(read)
2 1 2 read(read)
E£F Performance Profile & | Resource Profile + = = 08 3 EDCT Outer Loop
- . . . aq k (phi mux)
Pipelined Latency Initiation Interval Iteration Latency Trip count 5 tmp (icmp)
4 o dct_1d2 - 97 97 - 6 k 1(+)
4 o DCT_Outer_Loop no 96 - 12 8 7 tmp 15 (+)
@ DCT_Inner_Loop yes 9 1 3 8 8-... @DCT Inner Loop
19 tmp 3 (+)
20 node 60 (write)
Performance | Resource
[Properties| & Warnings | € C Source &
File: C\xup\SDSoC\labs\lab&\src\dct.c
19 dst[k] = DESCALE(tmp, CONST_BITS);
20 }
21}
(a) Zed
£ Module Hierarchy # = = O |/&] Synthesis(solution) 4 directives.tcl [el det.c 2l Synthesis(solut
BRAM DSP FF LUT Latency Interval Pipeline type Current Module : det > det 2d > det 142
4 @ dct 5 1 223 461 1723 1724 none
4 det 2d 3 1 162 321 1590 1580 none | oneration\Control S..| co | c1 | ¢ | ca |
e dct1d2 0 1 84 122 89 89 none 1 121 read(read)
2 i 2 read(read)
£7 Performance Profile & | Resource Profile 5 = = 8 3 EDCT Outer Loop
- . . . aq k (phi mux)
Pipelined Latency InitiationInterval Iteration Latency Trip count 5 (e
4 e dct_1d2 - 89 89 - 6 X 1(+)
4 ® DCT_Outer_Loop no 88 - 11 8 7 tmp 15(+)
e DCT_Inner_Lloop yes 8 1 2 8 8-... ®DCT Inner Loop
19 tmp 3(+)
20 node 60 (write)
Performance | Resource
[Tl Properties | & Warnings | [€ C Source
File: Chxup\SDSoC\labs\labe\src\dct.c
16 int coeff = (int)dct_coeff_table[k][n];
17 tmp += src[n] * coeff;
18 b
19 dst[k] = DESCALE(tmp, CONST_BITS);
20 }
(b) Zybo

Figure 16. Understanding what is preventing DCT_Outer_Loop flattening

4-2-6. Switch to the Synthesis perspective.

4-3. Create a new solution by copying the previous solution settings. Apply
fine-grain parallelism of performing multiply and add operations of the
inner loop of dct_1d using PIPELINE directive by moving the PIPELINE
directive from inner loop to the outer loop of dct_1d. Generate the solution
and analyze the output.

4-3-1. Select Project > New Solution.
4-3-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution2 selected).
4-3-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

4-3-4. With the source code open, in the Directive pane, select the PIPELINE directive of the
DCT_Inner_Loop of the dct_1d function, right-click on it and select Remove Directive.

v Xilinx.com/universit Zynqg 6-15
£ XILINX e /
© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS

Lab Workbook

4-3-5. Click No, if asked, to not to remove the label.
4-3-6. In the Directive pane again, select the DCT_Outer_Loop of the dct_1d function, right-click on it
and select Insert Directive...
4-3-7. A pop-up menu shows up listing various directives. Select the PIPELINE directive
4-3-8. Click Yes and then OK.
@ dct_1d
#[1 dct_coeff_table
%" DCT_Outer_Loop
0% HLS PIPELINE
%' DCT Inner_Loop
Figure 17. PIPELINE directive applied to DCT_Outer_Loop
By pipelining an outer loop, all inner loops will be unrolled automatically (if legal), so there is no
need to explicitly apply an UNROLL directive to DCT_Inner_Loop. Simply move the pipeline to
the outer loop: the nested loop will still be pipelined but the operations in the inner-loop body will
operate concurrently.
4-3-9. Click on the Synthesis button.
4-3-10. When the synthesis is completed, select Project > Compare Reports... to compare the two
solutions.
4-3-11. Select Solution2 and Solution3 from the Available Reports, click on the Add>> button, and then
click OK.
4-3-12. Observe that the latency reduced from 1851 to 875 for Zed whereas 1723 to 859 for Zybo.
-1 Latency (clock cycles) -l Latency (clock cycles)
solution3 solution? solution3 solution2
Latency min 875 1851 Latency min 859 1723
max 875 1851 max 859 1723
Interval min 876 1857 Interval min 860 1724
max 876 1852 max 860 1724
(a) Zed (b) Zybo
Figure 18. Performance comparison after pipelining
4-3-13. Scroll down in the comparison report to view the resources utilization. Observe that the utilization
of all resources (except BRAM) increased. Since the DCT_Inner_Loop was unrolled, the parallel
computation requires 8 DSP43E.
Zyng 6-16 www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook

Fine-Tuning with Vivado HLS

Utilization Estimates

solution3
BRAM_18K 5
DSP48E 8
FF 678
LUT 523
(a) Zed

Figure 19. Resources

4-3-14.

Utilization Estimates

solution2
5 BRAM_18K
1 DSP48E
256 FF
462 LUT

(b) Zybo

utilization after pipelining

solution3 solution2
5 5

8 1

615 223

537 461

Open the dct_1d2 report and observe that the pipeline initiation interval (Il) is four (4) cycles, not

one (1) as might be hoped, and there are now 8 BRAMs being used for the coefficient table.

Looking closely at the synthesis log, notice that the coefficient table was automatically partitioned,
resulting in 8 separate ROMs: this helped reduce the latency by keeping the unrolled computation
loop fed, however the input arrays to the dct_1d function were not automatically partitioned.

-1 Loop

Loop Name
- DCT_OQuter_Loop

(a) Zed
-1 Loop

Loop Name
- DCT_OQuter_Loop

(b) Zybo

Figure 20. Increased resource utilization of dct_1d

@I
@I
@I
@I
@I
@I
@I
@I
@I
@I

[RTMG-279]
[RTMG-279]
[RTMG-279]
[RTMG-279]
[RTMG-279]
[RTMG-279]
[RTMG-279]
[RTMG-279]
[RTMG-278]
[RTMG-278]

min
34

min
33

Implementing
Implementing
Implementing
Implementing
Implementing
Implementing
Implementing
Implementing
Implementing
Implementing

Latency
i max Iteration Latency
34 7

Latency
max Iteration Latency
33 6

memory
memory
memory
memory
memory
memory
memory
memory
memory
memory

achieved

achieved

Initiation Interval
target
4 1

Initiation Interval
target
4 1

"det_dct_1d_dct_coeff_table_© _rom'
"det_dct_1d_dct_coeff table 1 rom'
‘dct_dct 1d dct _coeff table 2 rom’
‘dct_dct 1d dct coetf table 3 rom’
"dct_dct 1d dect coeff table 4 rom’
"dct_dct_1d_dct_coeff_table_5_rom’
"dct_dct_1d_dct_coeff_table_6_rom'
"det_dct_1d_dct_coeff table 7 rom'
‘dct_dct 2d row outbuf ram’ using block RAMs.
‘det_dct 2d col _inbuf_ram' using block RAMs.

Figure 21. Automatic partitioning of dct_coeff_table

Trip Count
8

Trip Count
8

using
using
using
using
using
using
using
using

Pipelined

yes

Pipelined

yes

distributed
distributed
distributed
distributed
distributed
distributed
distributed
distributed

ROMs .
ROMs.
ROMs .
ROMs .
ROMs .
ROMs .
ROMs.
ROMs.

@w ESCHED—GQj Unable to schedule 'load’ Sper*;ation ('src_load 5", ../../../srcfdct.c:17) on array 'src' due to limited memory ports.
@I [SCHED-61] Pipelining result: Target II: 1, Final II: 4, Depth: 8.

Figure 22. Initiation in

terval of 4

looking at the dct_1d performance view.

4-4-1,
entry.

Perform design analysis by switching to the Analysis perspective and

Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct_1d

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

Zynq 6-17

Fine-Tuning with Vivado HLS

Lab Workbook

4-4-2. Expand, if necessary, the Performance Profile tab entries and notice that the DCT_Outer_Loop
is now pipelined and there is no DCT_Inner_Loop entry.
t Module Hierarchy F B < O |[[8 dctc =l Synthesis(solut 1l Synthesis(solut = Performance(sol 2 @&
BRAM | DSP | FF | LUT Latency Imerval Pipelinie type Current Module : det > det det 2d > det det 1d2
4 det 5 8 669 568 060 261 none ’
4 o detdct2d 3 8 58 427 835 825 none | operation\Control s | co | c1 | c2 | c3 | ca
o dctdct 0 3 473191 41 41 none 1 tmp 21 read(read)
2 tmp 2 read(read)
3 tmp 10(|)
4 tmp 12(])
5 tmp 14(])
£ performance Profile &2 . |- Resource Profile FE =8 6 tmp 16(1)
Pipelined Latency Initiation Interval Iteration Latency Trip count g $§ ;g E”
4 o det_dct_1d2 - 41 41 - 0 tmp 23(I)
@ DCT_Outer_Loop 39 4 12 8 1... ®DCT Outer Loop
(a) Zed
{2 Module Hierarchy # = = O |[[8dctc |7 comparereports | Synthesis(solution3) |&” compare reports |l Synthesis(solu
BRAM DSP FF LUT Llatency Interval Pipeline type o £ Module : det > det 2d > det 1d2
4o det 5 8 615537 859 860 none wrren uie ode < <
4 edtad 3 8 554 39% 726 726 none |oneration\Contral s | co | c1 | c2 | c3 | ca | c5 | ca
o det1d2 0 8 476 180 35 35 none 1 121 read(read)
2 | 1 2 read(read)
£F performance Profile &2 |- Resource Profile # == 8 3 tmp 16(1)
Pipelined Latency Initiation Interval Iteration Latency Trip count g gg ;‘SE:;
4 o det 1d2 - 35 35 6 | tmp 22(1)
© DCT_Outer_Loop 33 4 6 8 7 | tmp 24(])
8 | tmp 26(I)
9 | tmp 28(I)
1... ¥DCT OQuter Loop
(b) Zybo
Figure 23. DCT_Outer_Loop flattening
4-4-3. Select the Resource tab, expand the Memory Ports entry and observe that the memory accesses
on BRAM src are being used to the maximum in every clock cycle. (At most a BRAM can be dual-
port and both ports are being used). This is a good indication the design may be bandwidth
limited by the memory resource.
Current Module dct > det 2d > dct 1d2
'Resource\Control Stenl c0 | c1 | 2 | ca |l ca |l 5 | c6 | c7 |
1-6 #1/0 Ports
7 EMemory Ports |
8 src(pl) read read read read
9 dct coeff tabl... read
10 dct coeff tabl... read
i1 src(p0) read read read read
12 dct coeff tabl... read
13 dct coeff tabl... read
14 dct coeff tabl... read
15 dct coeff tabl... read
16 dct coeff tabl... read
17 dct coeff tabl... read
18 dst (p0) write
1... ¥Expressions
(a) Zed
Zynq 6-18 www.xilinx.com/universit 3
yn y & XILINX.

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

Current Module : dct > dct 24 > det 1d2

|Resource\Control Sten] co | c1 | 2 | 3 | ca | 5 | c6 |
1-6 ®#I/0 Ports
7 EMemory Ports
8 src(pl) read read read read
9 dct coeff tabl... read
10 src (p0) read read read read
11 dct coeff tabl... read
12 dct coeff tabl... read
13 dct coeff tabl... read
14 dct coeff tabl... read
15 dct coeff tabl... read
16 dct coeff tabl... read
17 dct coeff tabl... read
18 dst (p0) write
(b) Zybo
Figure 24. The Resource tab
4-4-4. Switch to the Synthesis perspective.
Improve Memory Bandwidth Step 5

5-1. Create a new solution by copying the previous solution (Solution3) settings.
Apply ARRAY_PARTITION directive to buf_2d_in of dct (since the
bottleneck was on src port of the dct_1d function, which was passed via
in_block of the dct_2d function, which in turn was passed via buf_2d_in of
the dct function) and col_inbuf of dct_2d. Generate the solution.

5-1-1. Select Project > New Solution to create a new solution.

5-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution3 selected).

5-1-3. With dct.c open, select buf_2d_in array of the dct function in the Directive pane, right-click on it
and select Insert Directive...

The buf_2d_in array is selected since the bottleneck was on the src port of the dct_1d function.
This array was passed via in_block of the dct_2d function, which in turn was passed via
buf_2d_in of the dct function).

5-1-4. A pop-up menu shows up listing various directives. Select the ARRAY_PARTITION directive.

5-1-5. Make sure that the type is complete. Enter 2 in the dimension field and click OK.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

Zyng 6-19

Fine-Tuning with Vivado HLS

Lab Workbook

| Vivado HLS Directive Editor

—_— . e

Type

Directive: | ARRAY_PARTITION

Destination
Source File

Q) Directive File

Options

variable (required): buf_2d_in

type (optional): complete

factor (optional):

dimension (optional): 2

Figure 25. Applying ARRAY_PARTITION directive to memory buffer

5-1-6. Similarly, apply the ARRAY_PARTITION directive with dimension of 2 to the col_inbuf array of
the dct_2d function.
5-1-7. Click on the Synthesis button.
5-1-8. When the synthesis is completed, select Project > Compare Reports... to compare the two
solutions.
5-1-9. Select Solution3 and Solution4 from the Available Reports, and click on the Add>> button.
5-1-10. Observe that the latency reduced from 875 to 509 for Zed and from 859 to 493 for Zybo.
-1 Latency (clock cycles) -l Latency (clock cycles)
solutiond solution3 solutiond solution3
Latency min 509 875 Latency min 493 859
max 509 875 max 493 859
Interval min 510 876 Interval min 494 860
max 510 876 max 494 860
(a) Zed (b) Zybo
Figure 26. Performance comparison after array partitioning
5-1-11. Scroll down in the comparison report to view the resources utilization. Observe the increase in
the FF resource utilization (almost double) and BRAM_18K utilization reduced as the two
selected arrays were completely partitioned.
Zyng 6-20 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

Utilization Estimates Utilization Estimates
solutiond solution3 solutiond solution3
BRAM_18K 3 5 BRAM_18K 3 5
DSP48E 3 3 DSP48E 3 3
FF 1204 678 FF 1075 615
LUT 630 523 LUT 630 537
(a) Zed (b) Zybo

Figure 27. Resources utilization after array partitioning

5-1-12. Expand the Loop entry in the dct.rpt entry and observe that the Pipeline Il is now 1.
=1 Loop
Latency Initiation Interval
Loop Name min max [teration Latency achieved target Trip Count Pipelined
- WE_Loop_Row_WR_Loop_Col b4 b4 2 1 1 64 yes
(@) Zed
-l Loop
Latency Initiation Interval
Loop Mame min max [Iteration Latency achieved target Trip Count Pipelined
- WR_Loop_Row_WR_Loop_Col 64 64 2 1 1 64 yes
(b) Zybo
Figure 28. 1I=1 achieved
Apply DATAFLOW Directive Step 6
6-1. Create a new solution by copying the previous solution (Solution4) settings.
Apply the DATAFLOW directive to improve the throughput. Generate the
solution and analyze the output.
6-1-1. Select Project > New Solution.
6-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution4 selected).
6-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.
6-1-4. Select function dct in the directives pane, right-click on it and select Insert Directive...
6-1-5. Select the DATAFLOW directive to improve the throughput.
6-1-6. Click on the Synthesis button.
6-1-7. When the synthesis is completed, the synthesis report is automatically opened.
3 www.xilinx.com/universit Zynq 6-21
& XILINX. / ynd

Xup@xilinx.com
© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

6-1-8. Observe that dataflow type pipeline throughput is listed in the Performance Estimates.

- Latency (clock cycles) -I Latency (clock cycles)
= Summary = Summary
Latency Interval Latency Interval
min | max min | max Type min max min max Type
508 508 375 375 dataflow 492 492 339 359 dataflow
(a) Zed (b) Zybo

Figure 29. Performance estimate after DATAFLOW directive applied

o The Dataflow pipeline throughput indicates the number of clock cycles between each set of
inputs reads (interval parameter). If this value is less than the design latency it indicates the
design can start processing new inputs before the currents input data are output.

o0 Note that the dataflow is only supported for the functions and loops at the top-level, not those
which are down through the design hierarchy. Only loops and functions exposed at the top-
level of the design will get benefit from dataflow optimization.

6-1-9. Look at the console view and notice that dct_coeff_table is automatically partitioned in dimension
2. The buf_2d_in and col_inbuf arrays are partitioned as we had applied the directive in the
previous run. The dataflow is applied at the top-level which created channels between top-level
functions read_data, dct_2d, and write_data.

INFO: [XFORM 283-712] Applying dataflow to function 'dct’ (../../../src/dct.c:78), detected/extracted 3 process function(s):
"read_data’
"det_2d’
'write data’.

Figure 30. Console view of synthesis process after DATAFLOW directive applied

6-2. Save the directives as pragmas in the dct.c file and exit Vivado HLS.

6-2-1. Double-click on the directives.tcl entry under solutions5 > constraints.

SHHHHHHHHH A A A AP HHAEHHAEHHAH

This file is generated automatically by Vivado HLS.

Please DO NOT edit it.

Copyright (C) 1986-2016 Xilinx, Inc. All Rights Reserved.
SHHHHHHHHH A A A AP HHAEHHAEHHAH

set directive resource -core RAM 1P "dct" input

set directive resource -core RAM 1P "dct" output

set directive latency -min 1 "dct”

set _directive pipeline "dct_ 2d/Xpose Col Inner Loop"

set _directive pipeline "dct_ 2d/Xpose Row Inner Loop"

11 set _directive pipeline "read data/RD Loop Col"

12 set directive pipeline "write data/WR_Loop Col"

13 set directive pipeline "dct 1d/DCT Outer Loop"

14 set directive_array_partition -type complete -dim 2 "dct" buf _2d in
15 set directive array_partition -type complete -dim 2 "dct 2d" col_inbuf
16 set directive dataflow "dct”

ol BT T o T o T Y = Wy

Figure 31. The applied directives

6-2-2. Since SDx does not use the directives.tcl file, we will need to move all the desired directives and
implement them as pragmas in the dct.c source file.

Zyng 6-22 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

6-2-3. With dct.c open and in focus, in the Directives tab, select one directive at a time, right-click on it,
select and Modify Directive.

6-2-4. Select Source file as the destination and click OK.
+ | Vivado HLS Directive Editar S

Directive

PIPELINE v

Destination

! Directive File

Options

I (optional):

enable flushing (optional): [
enable loop rewinding (optional): [C]

disable loop pipelining (optional): [

Hep || cCancel || oK

L

Figure 32. Move directives to source file

When all eleven directives are transferred to the source file, you should see #pragma directives
on lines 14, 29, 43, 56, 69, 83, 90, 91, 92, 93, and 96.

6-2-5. Select File > Save.

6-2-6. Close Vivado HLS by selecting File > Exit.

Performance Estimation of Optimized Model Step 7

7-1. Clean the project and re-estimate the performance.
7-1-1. Right-click the top-level folder for the project and click on Clean Project in the menu.
7-1-2. Build the project.

7-1-3. After the build is over, you can see an initial report. This report contains a hardware-only estimate
summary.

v www.xilinx.com/university Zynq 6-23
i‘ XI LINX” Xup@xilinx.com

© copyright 2016 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

=l SDSoC Repor.. & 10 = B

Performance and resource estimation report for the 'lab6’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time).
If the HW function latency and data transfer size at run-time is smaller than such assumptions,
the performance estimation will be mare pessimistic than the actual performance.

Details
Performance estimates for 'dct in dct_test.c:30° function

HW accelerated (Estimated cycles) 14591

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 3 220 3.64
BRAM 2 140 143
LUT 630 53200 1.18
FF 1466 106400 1.38
(a) Zed

Performance and resource estimation report for the 'lab6’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
worst-case data transfer size for arrays (if transfer size cannot be determined at compile time). If
the HW function latency and data transfer size at run-time is smaller than such assumptions, the
performance estimation will be more pessimistic than the actual performance.

Details
Performance estimates for ‘dct in dct_test.c:30° function

HW accelerated (Estimated cycles) 14591

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 8 g0 [10
BRAM 2 60 | 333
LuT 630 17600 | 358
FF 1337 35200 | 38
(b) Zybo

Figure 33. Initial estimate of hardware only performance of the optimized code

Zyng 6-24 www.xilinx.com/university v
Xup@xilinx.com i‘ XILINX“‘
© copyright 2016 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

The Summary section shows that the estimated HW acceleration is 14591 compared to the initial
hardware acceleration of 34511 for Zed, and 14895 compared to the initial hardware accelerator
of 27469, yielding a 2.4x (for Zed) and 1.84x (for Zybo) improvement.

Conclusion

In this lab, you learned various techniques to improve the performance using Vivado HLS. These
directives can be used with SDSoc through pragma statements. The PIPELINE directive when applied to
outer loop will automatically cause the inner loop to unroll. When a loop is unrolled, resources utilization
increases as operations are done concurrently. Partitioning memory may improve performance but will
increase BRAM tilization. When the DATAFLOW directive is applied, the default memory buffers (of
ping-pong type) are automatically inserted between the top-level functions and loops. The Analysis
perspective and console logs can provide insight on what is going on.

v www.xilinx.com/university Zynq 6-25
i‘ XI LINXJ Xup@xilinx.com

© copyright 2016 Xilinx

