
Lab Workbook Debugging Software Application

 www.xilinx.com/university Zynq 5-1
 xup@xilinx.com
 © copyright 2016 Xilinx

Debugging Software Application

Introduction
This lab guides you through the steps involved in debugging a software application in SDSoC. SDSoC
supports Standalone and Linux application debugging. SDSoC also provides the Dump/Restore Data File
feature which can be used to dump a memory snapshot on a disk and restore the memory content from a
pre-defined file.

Objectives

After completing this lab, you will be able to:
 Use the SDSoC environment to debug Standalone applications
 Use the SDSoC environment to debug Linux application

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises three primary steps: You will create an SDSoC project, debug a Standalone
application and debug a Linux application.

General Flow for this Lab

Step 1:

Create an
SDSoC
Project

Step 2:

Debugging
Standalone
Application

Step 3:

Debugging
Linux

Application

Debugging Software Application Lab Workbook

Zynq 5-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Create an SDx Project Step 1

You can execute Step 1 if you want to start from scratch otherwise skip to
Step 2.

1-1. Launch SDSoC and create a project, called lab5, using Standalone OS and
the Empty Application template targeting the Zed or Zybo board. Then add
the provided source files.

1-1-1. Open SDx, if not already open

The Workspace Launcher window will appear.

1-1-2. Click on the Browse button and browse to c:\xup\SDSoC\labs, if necessary, and click OK.

1-1-3. Select File > New > SDx Project to open the New Project GUI.

1-1-4. Enter lab5 as the project name.

1-1-5. Click Next to see Choose Hardware Platform window showing various available platforms.

1-1-6. Select either zybo or zed (depending on the board you are using) and click Next.

1-1-7. Select Standalone as the target OS, and click Next.

1-1-8. Select Empty Application and click Next.

1-1-9. Click Finish.

1-2. Import the provided source files from the source\lab5\src folder.

1-2-1. Right click on src under lab5 in the Project Explorer tab and select Import…

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse button, browse to the c:\xup\SDSoC\source\lab5\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

1-3. Mark sharpen_filter for the hardware acceleration. Setup for the Debug
configuration.

1-3-1. Add sharpen_filter function for acceleration.

1-3-2. Right-click on lab5 and select Build Configurations > Set Active > Debug

1-3-3. Right-click on lab5 and select Build Project

Lab Workbook Debugging Software Application

 www.xilinx.com/university Zynq 5-3
 xup@xilinx.com
 © copyright 2016 Xilinx

The project will be built, generating the bit stream, and an SD card image. Since this will take
about 20 minutes, we will import the pre-built project.

Debugging Standalone Application Step 2

Skip Step 2-1 if you are continuing from Step 1.

2-1. Import the pre-built lab5 project which has sharpen_filter marked for the
hardware acceleration. Uncheck the bitstream generation and SD card
image generation.

2-1-1. Select File > Import

2-1-2. Click on Existing Projects into Workspace under General and click Next.

2-1-3. Click on the Browse button of the Select archive file field, browse to c:\xup\SDSoC\source\lab5,
select lab5.zip and click Open.

Make sure that lab5 is checked in the Projects window.

2-1-4. Click Finish.

The project will be imported and lab5 folder will be created in the Project Explorer tab.

2-1-5. Expand the lab5 folder and double-click on the project.sdx entry.

The project file will be opened and the sharpen_filter function entry will be displayed in the HW
Functions window.

2-1-6. Uncheck the Generate Bit Stream and Generate SD Card Image options as they are already
generated.

2-2. Set the board to JTAG boot. Connect and power ON the board. Make
terminal connection. Start the debug session. Step through 5 statements.
Set a breakpoint on line 16 of the rgb_2_gray.c program.

2-2-1. Set the board to JTAG boot. Connect the board and power it ON.

2-2-2. Either use the SDx Terminal tab or use third party terminal emulator program like TeraTerm,
Putty, HyperTerminal. Make a connection to an appropriate COM port, setting 115200 baud rate.

2-2-3. Right-click on the lab5 project in the Project Explorer tab, and select Debug As > Launch on
Hardware (SDSoC Debugger)

The bitstream will be downloaded first to configure the board followed by the application
download.

2-2-4. Click Yes to switch to the debug perspective, if asked.

Debugging Software Application Lab Workbook

Zynq 5-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

The debug perspective should show up. If it doesn’t then click on the Debug perspective

() button.

Note that the program counter is at the main function entry point- line 75. In the Debug view you
will see the same information. The Variables tab shows various variables visible in the current
scope, the type, and their content.

2-2-5. Click on the Breakpoints tab and notice that two breakpoints are defined as default: (i) main and
(ii) _exit

Figure 1. Debug perspective

2-2-6. Click on the Step Over button about five times (or press F6) to
execute the printf statement (line 81).

When the statement is executed, you will see a message is being printed in the Terminal tab.

2-2-7. Click on the SDx button on the top-right () to change to the SDx C/C++
perspective.

The Project Explorer will show up.

2-2-8. Expand lab5 > src and double-click on the rgb_2_gray.c entry to open the file.

2-2-9. Double-click in the left border of the line (line 16) to set the breakpoint.

Figure 2. Set a breakpoint

Lab Workbook Debugging Software Application

 www.xilinx.com/university Zynq 5-5
 xup@xilinx.com
 © copyright 2016 Xilinx

2-2-10. Switch back to the Debug perspective by clicking on the Debug button.

2-2-11. Click on the Breakpoints tab and notice that another entry is added.

2-3. Continue with the execution. Inspect index variable. Observe memory
content of gr variable changing.

2-3-1. Click on the Resume button () which will start executing until
one of the breakpoints is encountered.

Note that the program stops at line 16 of rgb_2_gray.

2-3-2. Click on the Variables tab and note the content of various variables. Select index and note the
value (30) and its address 0x1016e5b4.

Figure 3. Variables content

2-3-3. Click on the Step Over button five times so that line 23 is highlighted. Note the variables content.

The blue variable is highlighted as that was the last variable whose content changed while
executing line 21 statement.

Note the next statement which will be executed will compute the variable gr.

2-3-4. Select gr and note the value (0) and the address 0x1016e5a2.

2-3-5. You can see its content in the Memory tab also. Select the Memory tab and click on “+” to open
up the Monitor Memory dialog box. Enter 0x1016e5a2 in the address bar and click OK.

Debugging Software Application Lab Workbook

Zynq 5-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 4. Monitor Memory window

The memory content will be displayed. The upper 16-bits represent the value.

2-3-6. Click on the Step Over button one more time and notice that the new value was computed and
the memory content change is reflected. The variable tab’s content also changed.

Figure 5. Variable gr’s updated value in the Memory tab

2-3-7. Move the mouse close to gray array in line 25 and notice that it is a pointer to an array of type
unit8_t. The pointer is stored at 0x1016e598. The pointer value of which is 0x00C00000.

Figure 6. Array gray

2-3-8. Scroll up the Memory tab 1 line to view the contents of location 0x1016e598 and notice that it is
pointing to 0x00c00000.

Lab Workbook Debugging Software Application

 www.xilinx.com/university Zynq 5-7
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 7. Pointer’s content

2-4. Add 0x00C00000 (array_g_1 address) in the Memory tab, click the Resume
button four times and observe the changing content. Remove the
breakpoint set at line 22 and click the Step Return button to complete the
function execution return to the main program.

2-4-1. Add 0x00C00000 in the Memory tab to view its content.

2-4-2. Click on Resume button four times and observe the array content changing.

Figure 8. Array content changing

2-4-3. Select the Breakpoints tab and uncheck the rgb_2_gray.c – line 22 check box. This will disable
the breakpoint.

2-4-4. Click on the Step Return button () to execute the function and
stop on line 100 of the SDSoC_lab_design_main.c program (_p0_sharpen_filter_1_noasync).

2-4-5. Select the Variables tab and select array_g_1. Note its content and the address.

Debugging Software Application Lab Workbook

Zynq 5-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 9. The processed content of array_g_1

2-5. Use Dump/Restore Data File feature of XSDK to update the array_g_1’s
content with the provided binary data file stored in the source/lab5
directory.

After the color buffer has been converted to gray, you will replace the
content of array_g_1 with the binary data provided to you in the
lab5_array_g_2.bin file.

2-5-1. Select Xilinx Tools > Dump/Restore Data File

2-5-2. Click the Select button, choose Name=Xilinx Hardware Server from the Peers section.

2-5-3. Expand the APU entry in the Contexts section and select ARM Cortex-A9 MPCore #0.

2-5-4. Click OK.

2-5-5. Click the Browse button, browse to C:\xup\SDSoC\source\lab5\, choose lab5_array_g_1.bin
and click Save.

2-5-6. Select the Restore Memory option as we want to read the file contents into the memory.

2-5-7. Enter 0x00C00000 in the Start Address field and 2073600 in the Size field.

Where 2073600 is the number of pixels (1920 x 1080).

2-5-8. Click OK.

Lab Workbook Debugging Software Application

 www.xilinx.com/university Zynq 5-9
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 10. Updating memory content with a pre-created binary content

This will load the content into the array (you can see the progress in the SDK log window). You
can see the updated content in the Memory tab.

Note that the next statement which will be executed will be using the hardware accelerator (line
100).

2-5-9. Click the Step Over button.

The array_g_2 content will be updated due to the execution of the statement.

2-5-10. Click the Disconnect () button to terminate the session.

Debugging Linux Application Step 3

For this portion of the lab, you will need an Ethernet port on the PC
configured to 192.168.0.1 as an IP address and an Ethernet cable
connected between the PC and the board.

You can execute Step 3-1 and Step 3-2 if you want to start from scratch
otherwise skip to Step 3-3.

3-1. Create a new empty application project called lab5a targeting Linux OS.
Import the provided source files from source\lab5\src folder

3-1-1. Select File > New > SDx Project to open the New Project GUI.

3-1-2. Enter lab5a as the project name, select either zybo or zed (depending on the board you are
using), select Linux as the target OS, select Empty Application and click Finish.

Debugging Software Application Lab Workbook

Zynq 5-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

3-1-3. Right click on src under lab5a in the Project Explorer tab and select Import…

3-1-4. Click on File System under General category and then click Next.

3-1-5. Click on the Browse button, browse to c:\xup\SDSoC\source\lab5\src folder, and click OK.

3-1-6. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

3-2. Mark sharpen_filter for the hardware acceleration. Build the Debug project.

3-2-1. Add the sharpen_filter in HW Function pane.

3-2-2. Right-click on lab5a and select Build Configurations > Set Active > Debug

3-2-3. Right-click on lab5a and select Build Project

The project will be build, generating bit stream, and the SD card image.

Since this will take about 20 minutes, we will import the pre-build project.

If you are continuing from Step 3-2, then skip Step 3-3.

3-3. Import the pre-built lab5a project which has sharpen_filter marked for the
hardware acceleration. Uncheck the bitstream generation option.

3-3-1. Select File > Import

3-3-2. Click on Existing Projects into Workspace under General and click Next.

3-3-3. Click on the Browse button of the Select archive file field, browse to c:\xup\SDSoC\source\lab5,
select lab5a.zip and click Open.

Make sure that lab5a is checked in the Projects window.

3-3-4. Click Finish.

The project will be imported and lab5a folder will be created in the Project Explorer tab.

3-3-5. Expand the lab5a folder and double-click on the project.sdx entry.

The project file will be opened and the sharpen_filter function entry will be displayed in the HW
Functions window.

3-3-6. Uncheck the Generate Bit Stream option making sure that the Generate SD Card Image option is
still checked.

Lab Workbook Debugging Software Application

 www.xilinx.com/university Zynq 5-11
 xup@xilinx.com
 © copyright 2016 Xilinx

3-4. Copy the sd_card content on the SD Card. Configure the board to boot
from the SD card. Connect and power up the board. Setup the ip addresses
both on the board and the PC Ethernet adaptor.

3-4-1. Using the Windows Explorer copy the content of the lab5a > Debug > sd_card onto the SD card.
Place the SD card into the board.

3-4-2. Configure the board to boot from the SD card.

3-4-3. Connect the board, including network cable, and power it ON.

The board will boot.

3-4-4. Make the serial connection using the appropriate COM port.

3-4-5. Press the PS-SRST button on the board to reboot and notice Linux booting.

3-4-6. Once the board boot is complete, set the ip address of the board to 192.168.0.10 typing the
following command at the Linux prompt:

ifconfig and note if any address is being assigned. If not assigned then execute the following
command to assign to the correct Ethernet adaptor.

Figure 11. Assigning an IP address

3-4-7. Using the control panel on the PC, configure the PC Ethernet adaptor with the static IP address to
192.168.0.1.

You can verify the connectivity by using ping 192.168.0.1 command from the board’s prompt.

3-5. Make target connection and start debugging the application.

3-5-1. In the Target Connections tab, expand Linux TCF Agent and double-click on Linux Agent
[default]

Debugging Software Application Lab Workbook

Zynq 5-12 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 12. Accessing Linux Agent

Alternately, in the Actions panel, for the connection, click on the New button.

3-5-2. Enter 192.168.0.10 in the Host field and then click OK making sure that the Port field is set to
1534.

Figure 13. Making connection for Linux target

3-5-3. Right-click on lab5a project in the Project Explorer and select Debug As > Launch on Hardware
(SDSoC Debugger).

The connection will be made.

The debug perspective should show up. If it doesn’t then click on the Debug perspective button.

Note that the program counter is at the main function - line 75. The Variables tab shows various
variables visible in the current scope, the type, and their content.

3-5-4. Click on the Step Over button five times to execute the printf statement. When executed, you will
see the message in the Console tab.

The variables tab will show various variables and arrays. Note that the value may be same as in
the Standalone application but the addresses where they are defined will be different as the
application is running under Linux.

3-5-5. Click on the SDx button on the top-right to change to the SDx C/C++ perspective.

The Project Explorer will show up.

3-5-6. Expand lab5a > src and double-click on the rgb_2_gray.c entry to open the file.

Lab Workbook Debugging Software Application

 www.xilinx.com/university Zynq 5-13
 xup@xilinx.com
 © copyright 2016 Xilinx

3-5-7. Double-click in the left border of the line (line 23) to set the breakpoint.

3-5-8. Switch back to the Debug perspective by clicking on the Debug button.

3-5-9. Click on the Resume button which will start executing until one of the breakpoints is encountered.

3-5-10. Note that the program stops at line 23 of rgb_2_gray.

3-5-11. Select index and note the value (0) and its address 0xbecc8c74. Note the address may be
different as MMU is used to translate virtual address into a physical address.

3-5-12. Click on the Step Over button five times such that line 25 is highlighted. Note the variables
content.

Note the next statement which will be executed will compute the variable gr.

3-5-13. Select gr and note the value (0x0011) and the address 0xbecc8c62. Note the address may be
different as MMU is used to translate virtual address into a physical address.

3-5-14. You can see its content in the Memory tab also. Select the Memory tab and click on “+” to open
up the Monitor Memory dialog box. Enter the address and click OK.

The memory content will be displayed. The upper 16-bits represent the value.

Since MMU is used in Linux, you won’t be able to see the content of the arrays and you won’t be
able to use the Dump/Restore Data File feature of SDx.

3-5-15. Remove the breakpoint and click Resume to execute the program to the completion.

This may take about 30 seconds.

3-5-16. Click on the Terminate button followed by click on the Disconnect button.

3-5-17. Turn OFF the board and exit the SDx program.

Conclusion

In this lab, you debugged Standalone and Linux applications. The Standalone application was debugged
using JTAG connection whereas the Linux application was debugged over Ethernet. In Standalone
application you were able to look into various arrays using the addresses and able to use the
Dump/Restore Data File feature of SDSoC. In Linux application this was not possible as MMU translates
the virtual addresses of arrays and pointers into physical addresses.

