
Lab Workbook  Pragmas and Data Motion Networks 
 

 www.xilinx.com/university Zynq 2-1 
 xup@xilinx.com 
 © copyright 2017 Xilinx 

Pragmas and Data Motion Networks 

Introduction 
This lab guides you through the process of handling data transfers between the software and hardware 
accelerators using various pragmas and the SDx API. 

Objectives  

After completing this lab, you will be able to: 
 Use pragmas to select ACP or AFI ports for data transfer 
 Use pragmas to select different data movers for your hardware function arguments 
 Understand the use of sds_alloc() and sds_free() calls 
 Understand the use of malloc() and free() calls  
 Understand the data motion network reports 

Procedure  

This lab is separated into steps that consist of general overview statements that provide information on 
the detailed instructions that follow. Follow these detailed instructions to progress through the lab. 

This lab comprises five primary steps: You will create an SDx project, mark two functions for hardware 
implementation, use sys_port and data_mover pragmas and understand the generated data motion 
networks, and, use malloc() and free() calls and see their impact on the hardware.  

General Flow for this Lab 

 

 

 

 
  

Step 1: 

Create an 
SDx Project 

Step 2:  

Build the 
Project and 

Analyze 

Step 3:  

Use sys_port 
Pragma 

Step 4:  

Use 
data_mover 

Pragma 

 

Step 5: 
Use malloc() 

and free() 
calls 

 



Pragmas and Data Motion Networks Lab Workbook 
 

Zynq 2-2 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2017 Xilinx 

Create an SDx Project Step 1 

1-1. Launch SDx and create a project, called lab2, using the matrix-multiply and 
add template, targeting the Zed or Zybo board. 

1-1-1. Open SDx by selecting Start > All Programs > Xilinx Design Tools > SDx 2017.2 > SDx IDE 
2017.2  

The Workspace Launcher window will appear. 

1-1-2. Click on the Browse button and browse to c:\xup\SDSoC\labs, if necessary and click OK. 

1-1-3. Click OK. 

Click X on the Welcome tab, if displayed, to close it. 

1-1-4. Select File > New > Xilinx SDx Project… to open the New Project GUI. 

1-1-5. Enter lab2 as the project name.  

1-1-6. Click Next to see Choose Hardware Platform window showing various available platforms.  

1-1-7. Select either zybo or zed (depending on the board you are using) and click Next. 

1-1-8. Select Linux as the target OS, and click Next. 

The Templates page appears, containing source code examples for the selected platform. 

1-1-9. Select Matrix Multiplication and Addition (area reduced) in case of zybo or Matrix 
Multiplication and Addition in case of zed as the source. 

1-1-10. Click Finish. 

The Project Explorer tab will display the lab2 project directory. The lab2 folder also shows the 
project.sdx file. Double-clicking on it will display what you see in the right-side pane. 

Notice the two functions, mmult and madd, are already targeted for hardware acceleration. Also, 
the data movement frequency selected is 142.86 MHz for Zed and 100.00 MHz for Zybo. 

Build the Project and Analyze Step 2 

2-1. Build the project. When done, analyze the data motion network through the 
report. 

2-1-1. Select Build Configurations > Set Active > Release 

2-1-2. In the SDx Project Settings pane on right, deselect the Bitstream and SD card image generation 
options since we want to explore the generated data motion network. 



Lab Workbook  Pragmas and Data Motion Networks 
 

 www.xilinx.com/university Zynq 2-3 
 xup@xilinx.com 
 © copyright 2017 Xilinx 

  

(a) Zed 

 

(b) Zybo 

Figure 1. Deselecting Bitstream and SD card image generation options 

2-1-3. Right-click on lab2 in the Project Explorer and select C/C++ Build Settings. Select 
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter  –maxjobs 
<host core count>/2 (substitute <host core count> with the actual number of cores of your 
machine) and click OK 

2-1-4. Right-click on lab2 and select Build Project 

This may take about 5 minutes. 

2-1-5. Expand the lab2 directory in Project Explorer and observe that Release folder is created along 
with virtual folders of Binaries and Archives. Expanding the Release folder shows _sds and src 
folders along with lab2.elf (executable), lab2.elf.bit (hardware bit file) and several make files. 

2-1-6. In the SDx Project Settings window, under the Reports pane, click on Data motion link to view 
the Data Motion Network report. 

The report shows the connections made by the SDx environment and the types of data transfers 
for each function implemented in hardware. You can also open this report file by double-clicking 
data_motion.html entry in Release > _sds > reports of Project Explorer. This will be used for 
reference later. 



Pragmas and Data Motion Networks Lab Workbook 
 

Zynq 2-4 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2017 Xilinx 

 

(a) Zed 

 

(b) Zybo 

Figure 2. Data motion network and accelerator callsites 

There are two accelerated functions- madd and mmult. They are given instance names as 
madd_1 and mmult_1. Each function has three arguments and hence three ports. Notice that the 
C port of mmult_1 is directly connected to A port of madd_1 port, whereas the other two ports of 
each hardware are connected in the system via AXIDMA_SIMPLE channels on ACP. 

The transfer size is 4096 bytes (or 1024 words) on each ports of the two accelerators in case of 
ZedBoard, whereas it is 2048 bytes in Zybo. 

Using sys_port Pragma Step 3 

3-1. Add sys_port pragma in mmult.h file. Build the project and analyze the data 
motion network. 

3-1-1. Expand lab2 > src and double-click on main.cpp to see its content. 

If line numbers are not visible then you can right-click in the left border of the file and select Show 
Line Numbers. 



Lab Workbook  Pragmas and Data Motion Networks 
 

 www.xilinx.com/university Zynq 2-5 
 xup@xilinx.com 
 © copyright 2017 Xilinx 

3-1-2. Double-click the mmultadd.h file in the Project Explorer view, to open the file in the source editor. 

3-1-3. Immediately preceding the declaration for the mmult function (line 53), insert the following to 
specify the system port for each of the input arrays 

#pragma SDS data sys_port(A:ACP, B:AFI) 

ACP is the default connection type, but it will be specified explicitly for A. B will have an AFI type 
which will connect it to one of the PS7 HP ports.  

3-1-4. Save the file by selecting File > Save 

3-1-5. Right-click the top-level folder for the project and click on Clean Project in the menu. 

3-1-6. Right-click the top-level folder for the project and click on Build Project in the menu. 

3-1-7. When build process is done, select the lab2 tab so you can access Data Motion link. 

3-1-8. Click on the Data Motion report link and analyze the result. 

 

(a) Zed 



Pragmas and Data Motion Networks Lab Workbook 
 

Zynq 2-6 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2017 Xilinx 

 

(b) Zybo 

Figure 5. Data Motion network after applying sys_port pragma 

Compared to Figure 2, observe that the Pragmas column has two sys_port entries for the 
mmult_1 instance. The same column shows that A port is connected to ACP whereas B is 
connected to AFI (HPx). The connections are made to the S_AXI_ACP and S_AXI_HP0 ports of 
the PS7. The AXIDMA_SIMPLE transfer is also selected. 

Using data_mover Pragma Step 4 

4-1. Comment out the sys_port pragma and add data_mover pragma in 
mmultadd.h file. Build the project and analyze the data motion network. 

4-1-1. Double-click the mmultadd.h under lab2 > src. 

4-1-2. Comment out the pragma that you had inserted in the previous section. 

4-1-3. Add the following pragma statement above the mmult function declaration. 

#pragma SDS data data_mover(A:AXIDMA_SG, B:AXIDMA_SIMPLE, C:AXIFIFO) 

4-1-4. Save the file by selecting File > Save 

4-1-5. Right-click the top-level folder for the project and click on Clean Project in the menu. 

4-1-6. Right-click the top-level folder for the project and click on Build Project in the menu. 

4-1-7. When build process is done, select the lab2 tab so you can access Data Motion link. 

4-1-8. Click on the Data Motion report link and analyze the result. 



Lab Workbook  Pragmas and Data Motion Networks 
 

 www.xilinx.com/university Zynq 2-7 
 xup@xilinx.com 
 © copyright 2017 Xilinx 

 

(a) Zed 

 

(b) Zybo 

Figure 7. Data Motion network after applying data_mover pragma 

Compared to Figure 2, observe that Pragmas columns has three data mover entries for the 
mmult_1 instance. The same column shows that A port is using AXIDMA_SG data mover, B is 
using AXIDMA_SIMPLE data mover, and C is using AXIFIFO data mover. The connection 
column indicates that A and B are connected to ACP whereas C  is connected to GP0 of the PS7.  

 



Pragmas and Data Motion Networks Lab Workbook 
 

Zynq 2-8 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2017 Xilinx 

Using malloc() Step 5 

5-1. Comment out the data_mover pragma in mmult.h file. Replace sds_alloc 
and sds_free calls with malloc and free calls in the main.cpp file.  Build 
the project and analyze the data motion network. 

The sds_alloc() call uses a single physical memory space which may or 
may not be available in Linux OS. The sds_alloc() call uses simple DMA 
data mover. Linux OS can translate contiguous virtual address into 
multiple physical address ranges. In Linux OS, malloc() can be used to 
enable single virtual address space mapping to multiple physical address 
space segments however it must use Scatter Gather (SG) DMA. Memory 
allocated using sds_alloc call must be released using sds_free call 
whereas memory allocated using malloc must be freed using free calls. 

5-1-1. Double-click the mmultadd.h under lab2 > src. 

5-1-2. Comment out the pragma for data_mover that you had inserted in the previous section and save 
the file. 

5-1-3. Save the file by selecting File > Save 

5-1-4. Double-click the main.cpp under lab2 > src. 

5-1-5. Replace 4 sds_alloc() calls with malloc() and 8 sds_free calls with free()(CTRL+F to access Find 
and Replace) and save the file. 

5-1-6. Right-click the top-level folder for the project and click on Clean Project in the menu. 

5-1-7. Right-click the top-level folder for the project and click on Build Project in the menu. 

5-1-8. When the build process is complete, select the lab2 tab so you can access Data Motion link. 

5-1-9. Click on the Data Motion report link and analyze the result. 



Lab Workbook  Pragmas and Data Motion Networks 
 

 www.xilinx.com/university Zynq 2-9 
 xup@xilinx.com 
 © copyright 2017 Xilinx 

 

(a) Zed 

 

(b) Zybo 

Figure 9. Data Motion network using malloc and free function calls 

Compared to Figure 2, observe that Paged or Contiguous column has paged type of data 
movement instead of contiguous. The Connection column shows AXIDMA_SG on S_AXI_ACP.  

5-1-10. Close SDx by selecting File > Exit 

Conclusion  

In this lab, you used various pragmas to control the generated data motion network and number of data 
movers. You used sys_port and data_mover pragmas and observed the type of ports used. You also 
used malloc() and free() calls instead of sds_alloc() and sds_free() calls to handle the non-contiguous 
memory usage. 

 

 


