Lab Workbook Estimating Accelerator Performance and Events Tracing

Estimating Accelerator Performance and Events
Tracing

Introduction

This lab guides you through the steps involved in estimating the expected performance of an application
when functions are implemented in hardware, without going through the entire build cycle. You will further
analyze how data movement is taking place by inserting an events tracer.

Objectives

After completing this lab, you will be able to:
e Use the SDx environment to obtain an estimate of the speedup that you can expect from your
selection of functions to accelerate

o Differentiate between the flows targeting Standalone OS and Linux OS
e Track various events taking place with respect to hardware accelerators
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises three primary steps: You will create an SDx project, estimate performance speedup
targeting the Standalone OS and then estimate performance speedup targeting the Linux OS.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Create an Performance Performance Tracing
SDx Project |:> Estimation |:> Estimation |:> Accelerator
targeting targeting Events
Standalone Linux Activities
v www.xilinx.com/university Zynq 4-1
i‘ X”—INXJ Xup@xilinx.com

© copyright 2017 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

Create an SDx Project Step 1

1-1.

1-1-1.

1-1-2.

1-1-3.

1-1-4.

1-1-5.

1-1-6.

Launch SDx and create a project, called lab4, using the Empty Application
template and then using the provided source files, targeting the Zed or
Zybo board and Standalone OS.

Open SDx, select c:\xup\SDSoC\labs as the workspace and click OK.

Create a new project called lab4

Click Next to see Choose Hardware Platform window showing various available platforms.
Select either zybo or zed (depending on the board you are using) and click Next.

Select Standalone as the target OS, and click Next.

Select Empty Application and click Finish.

1-2. Import the provided source files from source\lab4\src folder.

1-2-1. Right click on src under lab4 in the Project Explorer tab and select Import...

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse button, browse to c:\xup\SDSoC\source\lab4\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

Performance Estimation Targeting Standalone Step 2

2-1. Mark sharpen_filter for the hardware acceleration. Run an initial
performance estimate of the hardware only.

2-1-1. Click on the “+" (* IE]x) sign in the HW Functions area to open up the list of functions which
are in the source files.

2-1-2. Select the sharpen_filter function and click OK.

2-1-3. Set the Clock Frequency to 100 MHz.

2-1-4. In Options panel of the SDx Project Settings pane, click on Estimate Performance checkbox.

This selects the Estimate build configuration and performs the estimation flow.

Zyng 4-2 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

2-1-5.

2-1-6.

2-1-7.

2-1-8.

Options
Data motion network clock frequency (MHz): |142.86 -
Generate emulation model |Debug -

[¥| Generate bitstream
[¥] Generate SD card image

[Insert AXI performance monitor
"] Enable event tracing

[Z]Estimate performance

Root function: main [‘

Figure 1. Selecting Estimate performance option (Zedboard)
Select Build Configurations > Set Active > Debug

Right-click on lab4 in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter —maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OK

Right-click on lab4 and select Build Project.

The SDx environment builds the project. A dialog box displaying the status of the build process
appears.

After the build is over, you can see an initial report. This report contains a hardware-only estimate
summary which is calculated from the hardware compilation. There is a link that can be clicked to
run the software on the board and obtain the software performance results. Clicking this link will
also update the report with an estimated comparison of hardware accelerated implementation
versus the software-only information.

(' XI LINX www.xilinx.com/university Zynq 4-3

Xup@xilinx.com
© copyright 2017 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at
compile time). If the Hardware function latency and data transfer size at run-time is
smaller than such assumptions, the performance estimation will be more pessimistic than
the actual performance.

Details

Performance estimates for ‘sharpen_filter in SDSoC lab de ...

Hardware accelerated (Estimated cy 13847662

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DSP 0 220 0
BRAM 17 140 ¥ 12.14
LuT 9027 53200 |8 16.97
FF 11594 106400 109
(a) Zed

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at
compile time). If the Hardware function latency and data transfer size at run-time is
smaller than such assumptions, the performance estimation will be maore pessimistic than
the actual performance.

Details

Performance estimates for "sharpen_filter in 5D50C_lab_de ...

Hardware accelerated (Estimated cy 13501554

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DSP 0 80 0
BRAM 17 50 [28.33
LUT 9067 17600 [5157
FF 11648 35200 B 33.09
(b) Zybo

Figure 2. Initial estimate of hardware only performance

2-2. Connect and power up the board. Click on the Click Here link of the
initial estimation report to run the application and get the entire application
speedup.

2-2-1. Connect the board and power it ON.

Zynq 4-4 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

2-2-2. Click on the Click Here link in the SDSoC Report Viewer tab to get the software only application

performance and speedup.

Since the board is connected using JTAG and the OS is Standalone, the Local connection will be

used.

F |
=* Run application to get its performance ﬂ

Runs the application on the target to capture baseline software performance data

Please select correct target connection, ensure the board is connected and powered on.

Connection:
® [OK J l Cancel

S

Figure 3. Making connection to download and running application

2-2-3. Click OK.

A default bitstream (without the accelerator functionality) and the application will be downloaded

and executed.

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at
compile time). If the Hardware function latency and data transfer size at run-time is
smaller than such assumptions, the performance estimation will be more pessimistic thar
the actual performance.

Summary

Performance estimates for ‘'main’ function
SW-only (Measured cycles)

Hardware accelerated (Estimated cycle 16303480540

Estimated speedup 168

Details

Performance estimates for ‘sharpen_filter in SDSoC lab de ...

SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 13847662

Estimated speedup 161.17

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization

Dsp 0 220 0
BRAM 17 140 12.14

LUT a027 53200 16.97

FF 11594 106400 10.9

(a) Zed
www.xilinx.com/university Zynq 4-5
(: XILINX@ xup@xilinx.com

© copyright 2017 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

2-3-1.

2-3-2.

2-3-3.

2-3-4.

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at
compile time). If the Hardware function latency and data transfer size at run-time is
smaller than such assumptions, the performance estimation will be more pessimistic than
the actual performance.

Summary

Performance estimates for ‘'main’ function
SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 16301899026
Estimated speedup 1.68

Details

Performance estimates for ‘sharpen_filter in SDSoC_lab_de ...

SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 13501554

Estimated speedup 165.28

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DSP 0 0
BRAM 17 2833
LUT 9067 51.52
FF 11648 33.09
(b) Zybo

Figure 4. Comparison between the pure software and hardware accelerated

The Summary section shows that the estimated speedup between the software only and one with
the hardware accelerator is 1.68

Add sobel filter for the hardware acceleration. Run an initial performance
estimate of the hardware only.

Add the sobel_filter function to the accelerator list with 100 MHz Clock Frequency.
Select lab4 > Clean Project

Right-click on lab4 and select Build Project.

The SDx environment builds the project. A dialog box displaying the status of the build process
appears.

After the build is over, the initial estimate and resources report will be displayed again.

Zynq 4-6 www.xilinx.com/university i' XI LINX

xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also assumes worst-case
data transfer size for arrays (if transfer size cannot be determined at compile time). If the Hardware function
latency and data transfer size at run-time is smaller than such assumptions, the performance estimation will be
more pessimistic than the actual performance.

Details
Performance estimates for functions "sobel_filter in SD5So ...

Hardware accelerated (Estimated cy 13867729

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DSP 0 220 0
BRAM 18 140 ¥ 12.86
LuT 9825 53200 | 1847
FF 12109 106400 | 1138
(a) Zed

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at
compile time). If the Hardware function latency and data transfer size at run-time is
smaller than such assumptions, the performance estimation will be more pessimistic than
the actual performance.

Details
Performance estimates for functions 'sobel_filter in SDSo ...

Hardware accelerated (Estimated cy 13521113

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DSP 0 80 0
BRAM 18 60 30
LUT 9905 17600 | 5628
FF 12180 35200 || 346
(b) Zybo

Figure 5. Initial hardware acceleration estimate for the two functions

2-3-5. Click on the Click Here link in the SDSoC Report Viewer tab and click OK.

v Xilinx.com/universit Zynq 4-7
£ XILINX e /
© copyright 2017 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also assumes worst-case
data transfer size for arrays (if transfer size cannot be determined at compile time]. If the Hardware function
latency and data transfer size at run-time is smaller than such assumptions, the performance estimation will be
more pessimistic than the actual performance.

Summary

Performance estimates for 'main’ function

SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 757203139

Estimated speedup 36.14

Details

Performance estimates for functions 'sobel_filter in SDSo ...

SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 13867729

Estimated speedup 384.72

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DSsP 0 220 0
BRAM 18 140 12.86
LUT 9825 53200 1847
FF 12109 106400 11.38
(a) Zed

Zynq 4-8 www.xilinx.com/university 8 XI LINX

xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at
compile time). If the Hardware function latency and data transfer size at run-time is
smaller than such assumptions, the performance estimation will be more pessimistic than
the actual performance.

Summary

Performance estimates for ‘'main’ function

SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 755460307

Estimated speedup 36.22

Details

Performance estimates for functions "sobel filter in SDSo ...

SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 13521113

Estimated speedup 3946

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DSP 0 0
BRAM 18 30
LUT 9905 56.28
FF 12180 34.6
(b) Zybo

Figure 6. Actual performance estimation with two functions in hardware

Performance Estimation Targeting Linux Step 3

3-1.

Create a new empty application project called lab4a targeting Linux OS.
Import the provided source files from source\lab4\src folder

For this portion of the lab, you will need an Ethernet port on the PC
configured with 192.168.0.1 as an IP address and an Ethernet cable.

3-1-1. Select File > New > SDx Project to open the New Project GUI.

3-1-2. Enter lab4a as the project name.

3-1-3. Click Next to see Choose Hardware Platform window showing various available platforms.

3-1-4. Select either zybo or zed (depending on the board you are using) and click Next.

3-1-5. Select Linux as the target OS, and click Next.

a XILINX@ www.xilinx.c_qm/university Zynq 4-9
xup@xilinx.com

© copyright 2017 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

3-1-6. Select Empty Application and click Finish.

3-1-7. Right click on src under lab4a in the Project Explorer tab and select Import...

3-1-8. Click on File System under General category and then click Next.

3-1-9. Click on the Browse button, browse to c:\xup\SDSoC\source\lab4\src folder, and click OK.

3-1-10. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

3-2. Mark sharpen_filter for the hardware acceleration. Run an initial
performance estimate of the hardware only.

3-2-1. Click on the “+" (* |Eaty) sign in the HW Functions area to open up the list of functions which
are in the source files.

3-2-2. Select the sharpen_filter function and click OK.
3-2-3. Set the Clock Frequency to 100 MHz.
3-2-4. In Options panel of the SDx Project Settings pane, click on the Estimate Performance checkbox.

3-2-5. Right-click on lab4a in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter —maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OK

3-2-6. Right-click on lab4a and select Build Project

This selects the Debug build configuration and performs the estimation flow.

3-2-7. After the build is over, you will see an initial report.

3-3. Copy the sd_card contents to the SD Card. Configure the board to boot
from SD card. Connect and power up the board. Configure the board’s
Ethernet address to 192.168.0.10 and the PC’s to 192.168.0.1

3-3-1. Configure the board to boot from SD card.

3-3-2. Using the Windows Explorer copy the content of the lab4a > Debug > sd_card onto the (micro)
SD card. Insert the SD card into the board.

3-3-3. Connect the board, including network cable, and power it ON.

The board will boot. Make a serial connection using the appropriate COM port.

3-3-4. Press the PS-SRST button on the board to reboot and notice Linux booting.

Zyng 4-10 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2017 Xilinx

Lab Workbook

Estimating Accelerator Performance and Events Tracing

3-3-5. Once the board boot is complete, set the IP address of the board to 192.168.0.10 by typing the

3-3-6.

3-3-7.

3-3-8.

3-3-9.

3-3-10. Set the Host IP address to 192.168.0.10, the Port field to 1534, and then click OK.

following command at the Linux prompt:
ifconfig

Note if any address is being assigned.

If not assigned then execute the following command to assign to the correct Ethernet adaptor.

oha.3¢
eth@) Link encap:Ethernet HWaddr 00:8A:35:00:01:22
UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:1

packets:5@1 errors:® dropped:@ overruns:@ frame:@
No IP address Bckets:23 errors:0@ dropped:® overruns:® carrier:@
sions:0 txqueuelen:16060

RX bytes:53968 (52.7 KiB) TX bytes:7866 (7.6 KiB)
Interrupt:143 Base address:@xbege

lo Link encap:Llocal Loopback
inet addr:127.0.8.1 Mask:255.0.0.80
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:® dropped:@ overruns:@ frame:0
TX packets:® errors:@ dropped:@ overruns:@ carrier:@
collisions:@ txqueuelen:@
RX bytes:® (8.8 B) TX bytes:0 (8.8 B)

sh-4.3# [ifconfie(eth@)192,168.6.10|

Figure 7. Assigning an IP address

Configure the Ethernet adaptor IP address on the Zynq board to 192.168.0.10
ifconfig eth0 192.168.0.10
Configure the PC Ethernet adaptor IP address to 192.168.0.1

Expand Linux TCF Agent in the Target Connection tab.

) Target Connections &
+ = Hardware Server
4 = Linux TCF Agent
-4 Linux Agent [default]
» = QEMU TcfGdbClient

Figure 8. Configuring the Linux TCF Agent

Double-click on the Linux Agent [default] entry to open the connection form.

iv XI LINX www.xilinx.com/university

Xup@xilinx.com
© copyright 2017 Xilinx

Zyng 4-11

Estimating Accelerator Performance and Events Tracing Lab Workbook

EE Target Connection Details ﬂ

— O —

Edit Target Connection

Edit Target Connection

Target Name Linux Agent

I []Set as default target

I Specify the connection type and properties f

Type |Linux TCF Agent -

Host |192.168.0.10
Port |1534

Advanced > >

@ OK] i Cancel

L

Figure 9. Making connection for Linux target

3-4. Estimate the accelerator speedup.

3-4-1. In the performance and resource estimate report, click on the Click Here link. Click OK to launch
the Linux TCF agent.

3-4-2. When the execution completes the performance estimate report will be displayed in the SDSoC
report viewer.

Note: Performance estimation assumes worst-case latency of Hardware functions, it also assumes worst-case
data transfer size for arrays (if transfer size cannot be determined at compile time). If the Hardware function
latency and data transfer size at run-time is smaller than such assumptions, the performance estimation will
be more pessimistic than the actual performance.

Summary

Performance estimates for ‘'main’ function
SW-anly (Measured cycles)
Hardware accelerated (Estimated cycle 16456492855
Estimated speedup 1.68

Details

Performance estimates for ‘sharpen_filter in SDSoC_lab_de ...

SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 13847801

Estimated speedup 162.44

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DSP 0 220 0
BRAM 17 140 12.14
LUT 9027 53200 16.97
FF 11594 106400 109
(a) Zed
Zynq 4-12 www.xilinx.com/university i' XILINX
HH - L]
xup@xilinx.com

© copyright 2017 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

Mote: Performance estimation assumes worst-case latency of Hardware functions, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at
compile time). If the Hardware function latency and data transfer size at run-time is
smaller than such assumptions, the performance estimation will be more pessimistic than
the actual performance.

Summary

Performance estimates for ‘'main’ function
SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 16467005057
Estimated speedup 1.68

Details

Performance estimates for ‘sharpen_filter in SD50C lab_de ...

SW-only (Measured cycles)
Hardware accelerated (Estimated cycle 13501693

Estimated speedup 166.37

Resource utilization estimates for Hardware functions

Resource Used Total % Utilization
DsP 0 20 0
BRAM 17 60 28.33
LUT 067 17600 51.52
FF 11648 35200 33.09
(b) Zybo

Figure 10. Performance estimation targeting Linux OS

Note that the number of SW-only cycles have increased compared to Figure 4. This is due to the
overhead running in Linux.

Tracing Accelerator Events Activities Step 4

4-1.

4-1-1.

4-1-2.

4-1-3.

4-1-4.

4-1-5.

Import the provided prebuilt lab4b project from c:\xup\SDSoC\source\lab4.
Analyze the SDx Project Settings content.

Select File > Import and then select General > Existing Projects into Workspace and click
Next.

Select Select archive file and click Browse to navigate to ¢:\xup\SDSoC\source\lab4
Select lab4b.zip, and click Open.
Click Finish.

Double-click project.sdx under the lab4b folder to view the SDx Project Settings pane.

(' XI LINX www.xilinx.com/university Zynqg 4-13

xup@xilinx.com
© copyright 2017 Xilinx

Estimating Accelerator Performance and Events Tracing

Lab Workbook

Note that the Enable event tracing option is checked and the rgb_2 gray function operating at
100 MHz is included in the HW functions pane. The project was created targeting Standalone OS.

% SDx PrOJECt SEtti“gs Active build configuration:|Debug . | 3]
General Options
Project name: lab4b Data motion network clock frequency (MHz): id
Project type: SDSoC
Platform: zed |:|
Runtime: C/C++

System configuration: Standalone |_’

[insert X1 performance monitor

|| Enable event tracing

CPU: a9 0 [Estimate performance
0s: Standalone OS Root function: main U
Hardware Functions P
Name Clock Frequency (MHz) Path
rgb_2_gray 100.00f src/rgb_2_gray.c

Figure 11. Pre-built project with event tracing feature enabled

4-1-6. Uncheck the Generate bitstream and Generate SD card image check boxes as they are already
generated in the imported project.

4-2. Analyze the source code with the tracing code included in the
sharpen_filter stub.

4-2-1. Open SDSoC_lab_design_main.c from the c:\xup\SDSoC\labs\lab4b\Debug\ sds\swstubs
directory.

4-2-2. Change the number of times the algorithm loops over is changed from 5 to 1.
This is to reduce the amount of trace data collected and to give a better view of state analysis.
A8 #define WHOLE_PROCESS 3
A9 #define LOOPS // change to 1 from 5 for trace analysis
50
Figure 12. Loop iteration changed to 1

4-2-3. Notice that the call to the rgb_2_gray is replaced by the call to the stub.
90 #ifdef TIME_RGB2GRAY
91 sw_sds_clk start(RGB2GRAY);
92 #endif
93 | _p@_rgb_2 gray_1 noasync(array_c, ar*r*ay_g_l);l
04 #ifdef TIME_RGEZGRAY
95 sw_sds_clk _stop(RGB2GRAY);
Figure 13. Hardware function call

4-2-4. Double-click on the rgb_2_gray.c entry under the Debug/_sds/swstubs directory and notice the
actual call is updated.

Zyng 4-14 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook

Estimating Accelerator Performance and Events Tracing

A1~ void _p@_rgb_2_gray_1_noasync(uint32_t color[2073608], uint8_t gray[2073600])
42 {

43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58

w
[==NY=]

v O v Oy O

[V, = UV S]

}

switch_to_next_partition(@);

int start_seq[1];

start_seq[@] = 8;

cf request handle t p®@ swinst rgb 2 gray 1 cmd;

sds_trace(4000, EVENT_START); //ID:40800 Name:_p® rgb_2 gray_1 noasync-cmdSend
cf_send_i(&(_p@ swinst_rgb_2 gray 1l.cmd_rgb_2 gray), start_seq, 1 * sizeof(int), & p@ swinst_rgb_2 gray_1_cmd
sds_trace(4000, EVENT_STOP); //ID:4000 Name:_p®_rgb_2 gray_1_noasync-cmdSend
cf_set_trace_wait_tag(_p® swinst_rgb 2 pgray_1 cmd, 3999); //ID:3999 Name:_p® rgb_2 gray_1 noasync-cmdlait
cf_wait(p® swinst rgb 2 gray 1 cmd);

sds_trace(3998,EVENT_START); //ID:3998 Mame:_p® rgb 2 gray_1 noasync:color-send
cf_send_i(&(_p@® swinst_rgb_2 gray_1.color), color, 8294400, & pd request_a);
sds_trace(3998,EVENT_STOP); //ID:3998 Name:_p® rgb 2 gray_1 noasync:color-send
cf_set_trace_wait_tag(pP request @, 3997);//ID:3997 Mame: p® rgb 2 gray 1 noasync:color-wait

sds_trace(3996,EVENT_START); //ID:3996 Mame:_p® rgb_2 gray 1 noasync:gray-receive
cf_receive_i(&(_p®_swinst_rgb_2_gray 1.gray), egray, 2073600, & pd rgb 2 gray_1 noasync_num_gray, & p@ request
sds_trace(3996,EVENT_STOP); //ID:3996 Name:_p8_rgb_2 gray_1 noasync:gray-receive

cf_set_trace_wait_tag(_p@® request_1, 3995);//ID:3995 Name: p@® rgb_2 gray 1 noasync:gray-wait

cf_wait(_p® request_8);
cf_wait(_p®_request_1);

Figure 14. The rgb_2_gray function having sds_trace function calls

The stub function initializes the hardware accelerator, initiates any required data transfers for the
function arguments, and then synchronizes hardware and software by waiting at an appropriate
point in the program for the accelerator and all associated data transfers to complete.

Event tracing provides visibility into each phase of the hardware function execution, including the
software setup for the accelerators and data transfers, as well as the hardware execution of the
accelerators and data transfers.

The above code is instrumented for trace. Each command that starts the accelerator, starts a
transfer, or waits for a transfer to complete is instrumented (sds_trace(xxxx, EVENT_START |
EVENT_STOP);).

4-3. Run the application and collect the trace data.

4-3-1. Connect and power ON the board.

4-3-2. Right-click on the lab4b project and select Run As > Trace Application (SDSoC Debugger).

This will download the bitstream, then the application and finally run the application.

Notice in the SDx Log tab that the trace data is exported.

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

: Trace data is exported to file
: Trace data is exported to file
: Trace data is exported to file
: Trace data is exported to file
: Trace data is exported to file
. Trace data is exported to file
: Trace data is exported to file
: Trace data is exported to file
: Trace data is exported to file 'C:/xup/SDSoC/labs/lab4db/Debug/ sds/trace’
: Disconnected from the channel tcfchan#l.

Properties |E| SDx Log &2 SDx Termina E

'C:/xup/SDSoC/labs/labdb/Debug/_sds/trace’
'C:/xup/SDSoC/labs/labdb/Debug/_sds/trace’
'C:/xup/SDSoC/labs/labdb/Debug/ sds/trace’
C:/xup/SDSol/labs/lab4db/Debug/ sds/trace’
C:/xup/SDSoC/labs/lab4b/Debug/_sds/trace’
C:/xup/SDSoC/labs/lab4b/Debug/_sds/trace’
C:/xup/SDSoC/labs/lab4b/Debug/_sds/trace’
C:/xup/SDSoC/labs/labdb/Debug/_sds/trace’

:| Created tracing project "lab4b_Traces’
:| Added trace folder 'C:\xup\SDSoC\labs\lab4b_Traces\Traces\SDSo(_AXI_Trace_Sep-13_04-36" into 'lab4b_Traces

Figure 15. Exporting trace data

& XILINX.

www.xilinx.com/university Zyng 4-15
Xup@xilinx.com
© copyright 2017 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

When the trace data export is completed, the tool will create a trace folder named lab4b_Traces
in the Project Explorer tab.

A new tab, AXI State View, is created next to the Memory tab.

4-4. View the AXI State to analyze the application flow.
4-4-1. Expand the lab4b_Traces project folder in the Project Explorer tab.

4-4-2. Expand all the folders under the Traces[1] folder.

» 2% lab4b
4 [|lab4b_Traces
® Experiments [0]
4 (% Traces [1]
4 |2 SDSoC_AXI Trace_Sep-13_04-36
4 & AXI Event Analysis
EA AXI State View
4 & Tmf Statistics Analysis
= Statistics

Figure 16. Trace Project Folder

4-4-3. Click on the Home button in the AXI| State View tab.

This will show the entire trace history. You will notice

=

-ﬂ-Target Connections [0 Memory B AXI State View (SDSoC_AXI_Trace_Sep-13_04-36)

@:=alew ¢ o«
3

B SDSoC_AXI_Trace_Sep-13_04-36
App Runtime[0] |
_p0_rgb_2_gray_1_noasync-cmdSend[(]
_p0_rgb_2_gray_1_noasync-cmdWait[0]
_p0_rgb_2_gray_1_noasync:.color-send[0]
_p0_rgb_2_gray_1_noasync:gray-receive[0] |
_p0_rgb_2_gray_1_noasync.color-wait[0]
_p0_rgb_2_gray_1_noasync:gray-wait[0]
rgb_2_gray_1[0] i
rgb_2_gray_1_if:S_AXIS_FIFO_0[0] il
rgb_2_gray_1_ifM_AXIS_FIFO_0[0] il

Figure 17. Trace Visualization Highlighting the Different Types of Events — Stub Code
Comparison
4-4-4. Hover the cursor above one of the events.

Each trace point in the user application is given a unique name and axis, or swimlane, on
the timeline.

Each trace event has a few different attributes, such as name, type, start time, stop time,
and duration.

Zyng 4-16 www.xilinx.com/university v
Xup@xilinx.com (A XI LINXm

© copyright 2017 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

B SDSoC_AXI Trace_Sep-13_04-36 |
App Runtime[0] |
_p0_rgb_2_gray_1_noasync-cmdSend[0]
_p0_rgb_2_gray_1_noasync-cmdWait[0]
_p0_rgb_2_gray_1_noasync:.color-send[0]
_p0_rgb_2_gray_1_noasync:gray-receive[0] |
_p0_rgb_2_gray_1_noasync:color-wait[0] —
_p0_rgb_2_gray_1_noasync:gray-wait[0] i
rgb_2_gray_1[0] | Name _p0_rgb_2_gray_1_noasync:.color-wait[0]

rgb_2_gray_1_if:5_AXIS_FIFO_0[0] I start Time | 0.108020020
rgb_2_gray_1_itM_AXIS_FIFO_0[0] i

Stop Time | 8.124781491
Duration | 8016761471

Figure 18. Detailed Information Available for Each Event

4-4-5. Click on the previous/next event button = | @ VS) to see the start. Zoom out
appropriately to see initial events.

4 Target Connections [Memory EJ AXI State View (¥

B SDSoC_AX] Trace_Sep-13_04-36 4
App Runtime[0] F
_p0_rgb_2_gray_1_noasync-cmdSend[0]
_p0_rgb_2_gray_1_noasync-cmdWait[0] f‘
_p0_rgb_2_gray_1_noasync:color-send[0] &
_p0_rgb_2_gray_1_noasyncgray-receive[0] A
_p0_rgb_2_gray_1_noasynccolor-wait{0]

_p0_rgb_2_gray_1_noasyncgray-wait{0] -
rgb_2_gray_1[0] y
rgb_2_gray_1_it:5_AXIS_FIFO_0[0} Fs

rgb_2_gray_1_ift:M_AXIS_FIFO_0[0] *

Figure 19. Various events which setup and start accelerator

Note the time axis is in seconds. The first orange event (software) is the command being sent to
the accelerator. The green bar indicates the accelerator being used.

The second event is the wait for the dma to respond. The third, fourth and the fifth (software)
events deal with the dma associated with input and output.

The first blue event (rgb_2 gray 1 if:S_AXIS_FIFO_0[0]) indicates the actual data being
transferred whereas the second blue event is when the output
(rgb_2_gray 1 if:M_AXIS_FIFO_0[0])) has started. The time difference between the start of the
input and start of the output would be the latency.

4-4-6. Click somewhere on the second blue event and then click on the next event button (=). Zoom
out to see the desired view.

0108 028 300 0.108 028 350 0.108 028 400 0.108 028 450 0.108 028 500 0.108 028 550 0.108 028 600 0.1

B SDSoC_AXI Trace_Sep-13_04-36 |

App Runtime[0]

_p0_rgb_2_gray_1_noasync-cmdSend[0]

_p0_rgb_2 gray 1 noasync-cmdWait[0]

_p0_rgb_2_gray_1_noasync:color-send[0]

_p0_rgb_2_gray_1_noasync:gray-receive[0]

_p0_rgb_2_gray_1_noasync:color-wait[0]

_p0_rgb_2_gray_1_noasync:gray-wait[0] |

rgb_2_gray 1[0]
rgb_2_gray_1_if:S_AXIS_FIFO_0[0]
rgb_2_gray 1 if:M_AXIS_FIFO_0[0]

Figure 20. Tail end of the hardware accelerator events

As can be seen, the blue input (rgb_2_gray 1 _if:S_AXIS_FIFO_0[0])) finishes first.

The second blue (rgb_2 gray 1 if:M_AXIS_FIFO_O0[Q])) finishes next just after the green
accelerator.

v www.xilinx.com/university Zynq 4-17
i‘ XI LINX” Xup@xilinx.com

© copyright 2017 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

4-4-7.

4-5.

4-5-1.

4-5-2.

4-5-3.

4-5-4.

4-5-5.

4-5-6.

Click on the *:color-wait[0] orange bar and then click the next event button to see the tail end
activities. Zoom as necessary.

@

0.107 990 " 0.108 015 £.108 020

B SDSoC_AXI_Trace_Sep-13_04-36
App Runtime([0]
_p0_rgb_2_gray_1_noasync-cmdSend[0]
_p0_rgb_2_gray_1_noasync-cmdWait[0]
_p0_rgb_2_gray_1_noasync:color-send[0]
_p0_rgb_2_gray_1_noasync:gray-receive[0]
_p0_rgb_2_gray_1_noasync:color-wait{0] | |
_p0_rgb_2_gray_1_noasync:gray-wait[0] |
rgb_2_gray_1[0] d p=— = =
rgb_2_gray_1_if:S_AXIS_FIFO_0[0] L% e
rgb_2_gray_1_if:M_AXIS_FIFO_0[0] 4]

5~ L

Figure 21: Tail end of the transaction

The orange output (_p0_rgh_2-gray_1 noasync:color-wait[0]) finishes followed by (_p0O_rgb_2-
gray_1 noasync:gray-wait[0]) indicating the completion of the execution.

Analyze the built hardware using Vivado.

Start Vivado by selecting Start > All Programs > Xilinx Design Tools > SDx 2017.2 > Vivado
Design Suite > Vivado 2017.2

Click the Open Project link, open the design by browsing to
c:\xup\SDSoC\labs\lab4b\Debug_sds\pO_vpl\ipi\ipiprj and selecting ipiprj.xpr

Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

Figure 22. Block diagram with tracing hardware

Close Vivado without saving the block diagram.

Close SDx by selecting File > Exit

Turn OFF the power to the board.

Conclusion

In this lab, you performed speedup estimation of an application running under Standalone OS and Linux
OS, after targeting desired function for acceleration. Performance estimation does not require the full
bitstream generation and it gives speedup estimate by looking at the performance report generated by
HLS for each function targeted in hardware. Event tracing provides insight into how various events are
taking place and the relative time spent in data movement and data processing.

Zyng 4-18 www.xilinx.com/university i' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx

