
Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-1
 xup@xilinx.com
 © copyright 2017 Xilinx

Estimating Accelerator Performance and Events
Tracing

Introduction
This lab guides you through the steps involved in estimating the expected performance of an application
when functions are implemented in hardware, without going through the entire build cycle. You will further
analyze how data movement is taking place by inserting an events tracer.

Objectives

After completing this lab, you will be able to:
 Use the SDx environment to obtain an estimate of the speedup that you can expect from your

selection of functions to accelerate

 Differentiate between the flows targeting Standalone OS and Linux OS
 Track various events taking place with respect to hardware accelerators

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises three primary steps: You will create an SDx project, estimate performance speedup
targeting the Standalone OS and then estimate performance speedup targeting the Linux OS.

General Flow for this Lab

Step 1:

Create an
SDx Project

Step 2:

Performance
Estimation
targeting

Standalone

Step 3:

Performance
Estimation
targeting

Linux

Step 4:

Tracing
Accelerator

Events
Activities

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

Create an SDx Project Step 1

1-1. Launch SDx and create a project, called lab4, using the Empty Application
template and then using the provided source files, targeting the Zed or
Zybo board and Standalone OS.

1-1-1. Open SDx, select c:\xup\SDSoC\labs as the workspace and click OK.

1-1-2. Create a new project called lab4

1-1-3. Click Next to see Choose Hardware Platform window showing various available platforms.

1-1-4. Select either zybo or zed (depending on the board you are using) and click Next.

1-1-5. Select Standalone as the target OS, and click Next.

1-1-6. Select Empty Application and click Finish.

1-2. Import the provided source files from source\lab4\src folder.

1-2-1. Right click on src under lab4 in the Project Explorer tab and select Import…

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse button, browse to c:\xup\SDSoC\source\lab4\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

Performance Estimation Targeting Standalone Step 2

2-1. Mark sharpen_filter for the hardware acceleration. Run an initial
performance estimate of the hardware only.

2-1-1. Click on the “+” () sign in the HW Functions area to open up the list of functions which
are in the source files.

2-1-2. Select the sharpen_filter function and click OK.

2-1-3. Set the Clock Frequency to 100 MHz.

2-1-4. In Options panel of the SDx Project Settings pane, click on Estimate Performance checkbox.

This selects the Estimate build configuration and performs the estimation flow.

Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-3
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 1. Selecting Estimate performance option (Zedboard)

2-1-5. Select Build Configurations > Set Active > Debug

2-1-6. Right-click on lab4 in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter –maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OK

2-1-7. Right-click on lab4 and select Build Project.

The SDx environment builds the project. A dialog box displaying the status of the build process
appears.

2-1-8. After the build is over, you can see an initial report. This report contains a hardware-only estimate
summary which is calculated from the hardware compilation. There is a link that can be clicked to
run the software on the board and obtain the software performance results. Clicking this link will
also update the report with an estimated comparison of hardware accelerated implementation
versus the software-only information.

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

(a) Zed

(b) Zybo

Figure 2. Initial estimate of hardware only performance

2-2. Connect and power up the board. Click on the Click Here link of the
initial estimation report to run the application and get the entire application
speedup.

2-2-1. Connect the board and power it ON.

Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-5
 xup@xilinx.com
 © copyright 2017 Xilinx

2-2-2. Click on the Click Here link in the SDSoC Report Viewer tab to get the software only application
performance and speedup.

Since the board is connected using JTAG and the OS is Standalone, the Local connection will be
used.

Figure 3. Making connection to download and running application

2-2-3. Click OK.

A default bitstream (without the accelerator functionality) and the application will be downloaded
and executed.

(a) Zed

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 3. Comparison between the pure software and hardware accelerated

(b) Zybo

Figure 4. Comparison between the pure software and hardware accelerated

The Summary section shows that the estimated speedup between the software only and one with
the hardware accelerator is 1.68

2-3. Add sobel_filter for the hardware acceleration. Run an initial performance
estimate of the hardware only.

2-3-1. Add the sobel_filter function to the accelerator list with 100 MHz Clock Frequency.

2-3-2. Select lab4 > Clean Project

2-3-3. Right-click on lab4 and select Build Project.

The SDx environment builds the project. A dialog box displaying the status of the build process
appears.

2-3-4. After the build is over, the initial estimate and resources report will be displayed again.

Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-7
 xup@xilinx.com
 © copyright 2017 Xilinx

(a) Zed

(b) Zybo

Figure 5. Initial hardware acceleration estimate for the two functions

2-3-5. Click on the Click Here link in the SDSoC Report Viewer tab and click OK.

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

(a) Zed

Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-9
 xup@xilinx.com
 © copyright 2017 Xilinx

(b) Zybo

Figure 6. Actual performance estimation with two functions in hardware

Performance Estimation Targeting Linux Step 3

3-1. Create a new empty application project called lab4a targeting Linux OS.
Import the provided source files from source\lab4\src folder

For this portion of the lab, you will need an Ethernet port on the PC
configured with 192.168.0.1 as an IP address and an Ethernet cable.

3-1-1. Select File > New > SDx Project to open the New Project GUI.

3-1-2. Enter lab4a as the project name.

3-1-3. Click Next to see Choose Hardware Platform window showing various available platforms.

3-1-4. Select either zybo or zed (depending on the board you are using) and click Next.

3-1-5. Select Linux as the target OS, and click Next.

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

3-1-6. Select Empty Application and click Finish.

3-1-7. Right click on src under lab4a in the Project Explorer tab and select Import…

3-1-8. Click on File System under General category and then click Next.

3-1-9. Click on the Browse button, browse to c:\xup\SDSoC\source\lab4\src folder, and click OK.

3-1-10. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

3-2. Mark sharpen_filter for the hardware acceleration. Run an initial
performance estimate of the hardware only.

3-2-1. Click on the “+” () sign in the HW Functions area to open up the list of functions which
are in the source files.

3-2-2. Select the sharpen_filter function and click OK.

3-2-3. Set the Clock Frequency to 100 MHz.

3-2-4. In Options panel of the SDx Project Settings pane, click on the Estimate Performance checkbox.

3-2-5. Right-click on lab4a in the Project Explorer and select C/C++ Build Settings. Select
Miscellaneous under SDS++ Linker, click “+” button of the Other Options and enter –maxjobs
<host core count>/2 (substitute <host core count> with the actual number of cores of your
machine) and click OK

3-2-6. Right-click on lab4a and select Build Project

This selects the Debug build configuration and performs the estimation flow.

3-2-7. After the build is over, you will see an initial report.

3-3. Copy the sd_card contents to the SD Card. Configure the board to boot
from SD card. Connect and power up the board. Configure the board’s
Ethernet address to 192.168.0.10 and the PC’s to 192.168.0.1

3-3-1. Configure the board to boot from SD card.

3-3-2. Using the Windows Explorer copy the content of the lab4a > Debug > sd_card onto the (micro)
SD card. Insert the SD card into the board.

3-3-3. Connect the board, including network cable, and power it ON.

The board will boot. Make a serial connection using the appropriate COM port.

3-3-4. Press the PS-SRST button on the board to reboot and notice Linux booting.

Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-11
 xup@xilinx.com
 © copyright 2017 Xilinx

3-3-5. Once the board boot is complete, set the IP address of the board to 192.168.0.10 by typing the
following command at the Linux prompt:

ifconfig

Note if any address is being assigned.

If not assigned then execute the following command to assign to the correct Ethernet adaptor.

Figure 7. Assigning an IP address

3-3-6. Configure the Ethernet adaptor IP address on the Zynq board to 192.168.0.10

ifconfig eth0 192.168.0.10

3-3-7. Configure the PC Ethernet adaptor IP address to 192.168.0.1

3-3-8. Expand Linux TCF Agent in the Target Connection tab.

Figure 8. Configuring the Linux TCF Agent

3-3-9. Double-click on the Linux Agent [default] entry to open the connection form.

3-3-10. Set the Host IP address to 192.168.0.10, the Port field to 1534, and then click OK.

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-12 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 9. Making connection for Linux target

3-4. Estimate the accelerator speedup.

3-4-1. In the performance and resource estimate report, click on the Click Here link. Click OK to launch
the Linux TCF agent.

3-4-2. When the execution completes the performance estimate report will be displayed in the SDSoC
report viewer.

(a) Zed

Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-13
 xup@xilinx.com
 © copyright 2017 Xilinx

(b) Zybo

Figure 10. Performance estimation targeting Linux OS

Note that the number of SW-only cycles have increased compared to Figure 4. This is due to the
overhead running in Linux.

Tracing Accelerator Events Activities Step 4

4-1. Import the provided prebuilt lab4b project from c:\xup\SDSoC\source\lab4.
Analyze the SDx Project Settings content.

4-1-1. Select File > Import and then select General > Existing Projects into Workspace and click
Next.

4-1-2. Select Select archive file and click Browse to navigate to c:\xup\SDSoC\source\lab4

4-1-3. Select lab4b.zip, and click Open.

4-1-4. Click Finish.

4-1-5. Double-click project.sdx under the lab4b folder to view the SDx Project Settings pane.

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-14 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

Note that the Enable event tracing option is checked and the rgb_2_gray function operating at
100 MHz is included in the HW functions pane. The project was created targeting Standalone OS.

Figure 11. Pre-built project with event tracing feature enabled

4-1-6. Uncheck the Generate bitstream and Generate SD card image check boxes as they are already
generated in the imported project.

4-2. Analyze the source code with the tracing code included in the
sharpen_filter stub.

4-2-1. Open SDSoC_lab_design_main.c from the c:\xup\SDSoC\labs\lab4b\Debug_sds\swstubs
directory.

4-2-2. Change the number of times the algorithm loops over is changed from 5 to 1.

This is to reduce the amount of trace data collected and to give a better view of state analysis.

Figure 12. Loop iteration changed to 1

4-2-3. Notice that the call to the rgb_2_gray is replaced by the call to the stub.

Figure 13. Hardware function call

4-2-4. Double-click on the rgb_2_gray.c entry under the Debug/_sds/swstubs directory and notice the
actual call is updated.

Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-15
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 14. The rgb_2_gray function having sds_trace function calls

The stub function initializes the hardware accelerator, initiates any required data transfers for the
function arguments, and then synchronizes hardware and software by waiting at an appropriate
point in the program for the accelerator and all associated data transfers to complete.

Event tracing provides visibility into each phase of the hardware function execution, including the
software setup for the accelerators and data transfers, as well as the hardware execution of the
accelerators and data transfers.

The above code is instrumented for trace. Each command that starts the accelerator, starts a
transfer, or waits for a transfer to complete is instrumented (sds_trace(xxxx, EVENT_START |
EVENT_STOP);).

4-3. Run the application and collect the trace data.

4-3-1. Connect and power ON the board.

4-3-2. Right-click on the lab4b project and select Run As > Trace Application (SDSoC Debugger).

This will download the bitstream, then the application and finally run the application.

Notice in the SDx Log tab that the trace data is exported.

Figure 15. Exporting trace data

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-16 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

When the trace data export is completed, the tool will create a trace folder named lab4b_Traces
in the Project Explorer tab.

A new tab, AXI State View, is created next to the Memory tab.

4-4. View the AXI State to analyze the application flow.

4-4-1. Expand the lab4b_Traces project folder in the Project Explorer tab.

4-4-2. Expand all the folders under the Traces[1] folder.

Figure 16. Trace Project Folder

4-4-3. Click on the Home button in the AXI State View tab.

This will show the entire trace history. You will notice

Figure 17. Trace Visualization Highlighting the Different Types of Events – Stub Code
Comparison

4-4-4. Hover the cursor above one of the events.

Each trace point in the user application is given a unique name and axis, or swimlane, on
the timeline.

Each trace event has a few different attributes, such as name, type, start time, stop time,
and duration.

Lab Workbook Estimating Accelerator Performance and Events Tracing

 www.xilinx.com/university Zynq 4-17
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 18. Detailed Information Available for Each Event

4-4-5. Click on the previous/next event button () to see the start. Zoom out
appropriately to see initial events.

Figure 19. Various events which setup and start accelerator

Note the time axis is in seconds. The first orange event (software) is the command being sent to
the accelerator. The green bar indicates the accelerator being used.

The second event is the wait for the dma to respond. The third, fourth and the fifth (software)
events deal with the dma associated with input and output.

The first blue event (rgb_2_gray_1_if:S_AXIS_FIFO_0[0]) indicates the actual data being
transferred whereas the second blue event is when the output
(rgb_2_gray_1_if:M_AXIS_FIFO_0[0])) has started. The time difference between the start of the
input and start of the output would be the latency.

4-4-6. Click somewhere on the second blue event and then click on the next event button (). Zoom
out to see the desired view.

Figure 20. Tail end of the hardware accelerator events

As can be seen, the blue input (rgb_2_gray_1_if:S_AXIS_FIFO_0[0])) finishes first.

The second blue (rgb_2_gray_1_if:M_AXIS_FIFO_0[0])) finishes next just after the green
accelerator.

Estimating Accelerator Performance and Events Tracing Lab Workbook

Zynq 4-18 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

4-4-7. Click on the *:color-wait[0] orange bar and then click the next event button to see the tail end
activities. Zoom as necessary.

Figure 21: Tail end of the transaction

The orange output (_p0_rgb_2-gray_1_noasync:color-wait[0]) finishes followed by (_p0_rgb_2-
gray_1_noasync:gray-wait[0]) indicating the completion of the execution.

4-5. Analyze the built hardware using Vivado.

4-5-1. Start Vivado by selecting Start > All Programs > Xilinx Design Tools > SDx 2017.2 > Vivado
Design Suite > Vivado 2017.2

4-5-2. Click the Open Project link, open the design by browsing to
c:\xup\SDSoC\labs\lab4b\Debug_sds\p0_vpl\ipi\ipiprj and selecting ipiprj.xpr

4-5-3. Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

Figure 22. Block diagram with tracing hardware

4-5-4. Close Vivado without saving the block diagram.

4-5-5. Close SDx by selecting File > Exit

4-5-6. Turn OFF the power to the board.

Conclusion

In this lab, you performed speedup estimation of an application running under Standalone OS and Linux
OS, after targeting desired function for acceleration. Performance estimation does not require the full
bitstream generation and it gives speedup estimate by looking at the performance report generated by
HLS for each function targeted in hardware. Event tracing provides insight into how various events are
taking place and the relative time spent in data movement and data processing.

